Physico-chemical characterization of Al2O3/Ti6A4V type thermal barrier systems
Main Article Content
Abstract
Al2O3 alumina deposits were deposited on Ti6A4V titanium alloy substrates by rf-PVD at different substrate polarizations 0V, -50V, -100V and without polarization (wp). SEM images, at the surface of the deposits, showed a very good substrate coverage with a dense morphology. Quantitative EDS analysis of these deposits revealed the presence of the elements Al and O in these deposits. The mass percentage of these elements, at different polarizations of the substrate, varies between 51.72% and 56.19% for Al and between 43.80% and 48.27% for O. The images, revealed by AFM, showed well-spread deposits on the surface of the substrates with relatively uniform grooves. The values of the arithmetic roughness Ra, ranging from 3.45 to 4.75 nm, testify to the low crystallinity of these deposits and an appreciable density. The DRX of these deposits in mode showed a weak crystallization of the Al2O3 phase and characteristic peaks of the partially crystallized phases Al0.3Ti1.7, and Ti0.7V0.3, resulting from the interaction of the elements of the Ti6A4V substrate and those of the Al2O3 deposit.
Article Details
Section

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
How to Cite
References
Amari D, Khireddine H, Khelfaoui Y, Saoula N. (2019). Adhesion and Corrosion of Ti, TiN and TiCrN Films Deposits on AISI 316L in SBF Solution, Def and Diff Forum, ISSN: 1662-9507, Vol. 397, pp 39-50.
Barrena M.I, Matesanz L, de Salazar J.M.G. (2009). Al2O3/Ti6Al4V diffusion bonding joints using Ag-Cu interlayer. Mater. Charact. 60, 1263–1267.
Bobzin K, Kalscheuer C, Mobius M P ,Hassanzadegan Aghdam P. (2024). Thermal stability of thick a- and y-Al2O3 coatings deposited by high-speed PVD Surf & Coat Tech 477. 130411.
Cai X Q, Wang D P, Wang Y, Yang Z W.(2020). Microstructural evolution and mechanical properties of TiB2-TiC-SiC ceramics joint brazed using Ti-Ni composite foils. J. Eur. Ceram. Soc. 40, 3380 –3390.
Carter CB, Norton M.G. (2007). Ceramic Materials; Springer: New York, NY, USA, ISBN 978-0-387- 46270 -7.
Cazajus V, Seguy S, Welemane H (2012). Karama, M. Residual stresses in a ceramic-metal composite. Appl. Mech. Mater, 146, 185 – 196.
Damani R J, Makroczy P. (2000). Heat Treatment Induced Phase and Microstructural Development in Bulk Plasma Sprayed Alumina, J. Europ. Ceram. Soc., vol. 20, pp. 867-888.
Delmas M. (2005). Revêtements aluminium-platine obtenus par dépôt chimique en phase vapeur pour la protection de l’alliage Ti6342 contre l’oxydation à des températures inférieures à 600°C, thèse de doctorat, institut polytechnique de toulouse.
Derniaux E, (2007). Etude de structures NiCoCrAlY/Al2O3/TiO/Pt/AlN déposées par pulvérisation cathodique sur superalliage base Ni pour capteurs de pression haute température, thèse de doctorat, univ. Caen/basse-normandie.
Emadinia O, Guedes A, Tavares C J, Simoes S. (2020). Joining Alumina to Titanium Alloys Using Ag-Cu Sputter-Coated Ti Brazing Filler. Materials. 13, 4802.
Lee H C, Lee J Y, Ahn H J. (1994). Effect of the substrate bias voltage on the crystallographic orientation of reactively sputtered AlN thin films. Thin Solid Films 251, pp. 136-140.
Lee H C, Lee J Y. (1997). Effect of negative bias voltage on the microstructures of AlN thin films fabricated by reactive r.f. magnetron sputtering, Mater. Sci.: Mater. Electron 8, pp. 385-390.
Leyens C, Peters M. (2003). Titanium and Titanium Alloys; Wiley: Hoboken, NJ, USA, ISBN 9783527305346.
Li C, Zhang K, Mao X, Si X, Lan B, Liu Z G, Huang Y, Qi J, Feng J, Cao J. (2020). Microstructure and mechanical properties of the AlON / Ti6Al4V active element brazing joint. Mater. Sci. Eng. A. 793, 139859.
Lu Y, Zhu M., Zhang Q, Hu T, Wang J, Zheng, K. (2020). Microstructure evolution and bonding strength of the Al2O3/Al2O3 interface brazed via Ni-Ti intermetallic phases. J. Eur. Ceram. Soc. 40, 1496–1504.
Marcionilo S J r, Ramos A S, Teresa M V, Simoes S. (2022). Joining of Ti6Al4V to Al2O3 Using Nanomultilayers, Nanomaterials, 12, 706. https://doi.org/10.3390/ nano12040706.
Mir F A, Khan, N Z, Parvez S. (2021). Recent advances and development in joining ceramics to metals. Mater. Today Proc., 46, 6570 – 6575.
Nicholls J R. (2003). Advances in Coating Design for High-Performance Gas Turbines, MRS Bulletin, vol. september, pp. 659-670.
Park J Y, Park S W, Lee H N, Oh M H, Wee D M. (1997). (Al,Cr)3Ti-based two phase intermetallic compounds-II. Application to coating materials on TiAl, Scrip. Mater., vol. 36, pp. 801-806.
Schoderbock P. (2023). On the relationship between texture characteristics and residual stress levels: An X-ray diffraction study on a-Al2O3 hard coatings. Thin Sol Films. V.777, 139893.
Silva M, Ramos A S, Vieira M.T, Simoes S. (2021a). Diffusion Bonding of Ti6Al4V to Al2O3 Using Ni/Ti Reactive Multilayers. Metals. 11, 655.
Silva M, Ramos A.S, Simoes S. (2021b). Joining Ti6Al4V to alumina by diffusion bonding using titanium interlayers. Metals. 11, 1728.
Simoes S. (2018). Recent Progress in the Joining of Titanium Alloys to Ceramics. Metals, 8, 876.
Soo-Wohn L, Paraguay-Delgado F, Arizabalo R D , Gomez R Rodriguez-Gonzalez V. (2013). Understanding the photophysical and surface properties of TiO2–Al2O3 nanocomposites. Mat Lett. V. 107, P 10-13.
Streiff R. (1993). Protection of materials by advanced high temperature coatings," J. Phys. IV, vol. 3, pp. 17- 41.
Tang Z, Wang F, Wu W. (2000). Effetcs of Al2O3 and enamel coatings on 900°C oxidation and hot corrosion behavior of Gamma-TiAl," Mat. Sci. Eng. A, vol. 276, pp. 70-75.
Taniguchi S, Shibata T, Yamada T, Liu X, Zou S. (2001). ISIJ Int., vol. 33, pp. 869, 1993.
Travessa D, Ferrante M. (2002). The Al2O3-titanium adhesion in the view of the diffusion bonding process. J. Mater. Sci. 37, 4385–4390.
Uday M B, Ahmad F M.N, Noor AM., Rajoo S. (2016). Current Issues and Problems in the Joining of Ceramic to Metal. In Joining Technologies; Ishak, M., Ed.; InTech: Rijeka, Croatia, Chapter 8.
Wang R, Dong X, Wang K, Sun X, Fan Z, Duan W, Byung-Guk J M. (2021). Polarization effect on hole evolution and periodic microstructures in femtosecond laser drilling of thermal barrier coated superalloy, App Surf Sci, Vo 537, 148001.
Xue H, Wei X, Guo W, Zhang X. (2020). Bonding mechanism study of active Ti element and _-Al2O3 by using first-principle calculation. J. Alloys Compd. 820, 153070.