PV Module Surface Area Maximisation for Enhancing Performance

Main Article Content

Moses Oyaro Okello

Abstract

The amount of solar energy produced is directly proportional to the surface area of PV module exposed to solar irradiance. To increase the productivity of PV module, a number of techniques are proposed by curving the surface or protruding the PV module surface to maximise the surface area. The geometrical design analysis showed that, depending on the chosen surface curving method, the PV module can achieve a remarkable increase in surface area.


The system advisor model was used to assess a sample of solar cells with standard measurements of 6 by 6 inches that were organised in a zigzag pattern with different angles of curvation (10°, 15°, 20°, 25°, 30°, and 35°). Overall, the maximum power pump and annual AC energy performance increase by 1.4%, 4.2%, 6.8%, 10.8%, 14.9%, and 21.6%, respectively, over a one-year period of productivity. However, by applying the concept of solar PV module efficiency degradation due to tilting PV module at an angle by Mamun et al. (2022), for each 5° increase in tilt angle beyond the ideal 10°, the efficiency decreases by approximately 0.76%. In conclusion, the overall efficiency is greater than that of standard flat solar PV module, provided the curvation angle is within a reasonable range.

Article Details

Section

Articles

How to Cite

[1]
“PV Module Surface Area Maximisation for Enhancing Performance”, J. Ren. Energies, vol. 28, no. 1, pp. 121 – 134, Jun. 2025, doi: 10.54966/1vy31947.

References

Adefila, O. F., Ugwu, J., & Okonta, E. D. (2025). Optimising Energy Efficiency in Electric Buses with Curved Surface Solar Panels. Solar Energy Advances, 100109. Doi : 10.1016/j.seja.2025.100109.

Behera, B., & Ali, A. (2017). Factors determining household use of clean and renewable energy sources for lighting in Sub-Saharan Africa. Renewable and Sustainable Energy Reviews, 72, 661-672. DOI: 10.1016/j.rser.2017.01.080.

Chen, Y. M., Lee, C. H., & Wu, H. C. (2005). Calculation of the optimum installation angle for fixed solar-cell panels based on the genetic algorithm and the simulated-annealing method. IEEE Transactions on Energy Conversion, 20(2), 467-473. DOI:10.1109/TEC.2004.832093.

Cox Iii, C. H., & Raghuraman, P. (1985). Design considerations for flat-plate-photovoltaic/thermal collectors. Solar energy, 35(3), 227-241. DOI: 10.1016/0038-092X(85)90102-1.

Do Ango, A. M., Médale, M., & Abid, C. (2013). Optimization of the design of a polymer flat plate solar collector. Solar Energy, 87, 64-75. DOI: 10.1016/j.solener.2012.10.006.

El-Khozondar, H. J., Asfour, A. A., Nassar, Y. F., Shaheen, S. W., El-Zaety, M. F., El-Khozondar, R. J., ... & Alsharif, A. H. (2024). Photovoltaic solar energy for street lighting: A case study at Kuwaiti Roundabout, Gaza Strip, Palestine. Power Eng. Eng. Thermophys, 3(2), 77-91.

Ewim, D. R. E., Abolarin, S. M., Scott, T. O., & Anyanwu, C. S. (2023). A survey on the understanding and viewpoints of renewable energy among South African school students. The Journal of Engineering and Exact Sciences, 9(2), 15375-01e. DOI:10.18540/jcecvl9iss2pp15375-01e.

Eze, V. H. U., Richard, K., Ukagwu, K. J., & Okafor, W. (2024). Factors Influencing the Efficiency of Solar Energy Systems. Journal of Engineering, Technology, and Applied Science (JETAS), 6(3), 119-131.

Feldman, J., Rechnitzer, A., & Yeager, (2017) E. CLP-4 Vector Calculus textbook. URL: https://secure. math. ubc. ca/~ CLP/CLP4.

Hasan, S., Khan, M. E., & Parvez, M. (2021). Experimental analysis of a solar thermal hybrid VRF system for maximum energy economy based on Delhi (India) climate. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(14), 1779-1792.

Khan, S., Ahmad, A., Ahmad, F., Shafaati Shemami, M., Saad Alam, M., & Khateeb, S. (2018). A comprehensive review on solar powered electric vehicle charging system. Smart Science, 6(1), 54-79. DOI: 10.1080/23080477.2017.1419054.

Khare, V., & Bunglowala, A. (2020). Design and assessment of solar-powered electric vehicle by different techniques. International Transactions on Electrical Energy Systems, 30(4), e12271. DOI:10.1002/2050-7038.12271.

Majdi, A., Alqahtani, M. D., Almakytah, A., & Saleem, M. (2021). Fundamental study related to the development of modular solar panel for improved durability and repairability. IET Renewable Power Generation, 15(7), 1382-1396.

Mamun, M. A. A., Islam, M. M., Hasanuzzaman, M., & Selvaraj, J. (2022). Effect of tilt angle on the performance and electrical parameters of a PV module: Comparative indoor and outdoor experimental investigation. Energy and Built Environment, 3(3), 278-290.

Mugagga, R. G., Chamdimba, H. B. N., & Chamdimba, N. (2019). A comprehensive review on status of solar PV growth in Uganda. Journal of Energy Research and Reviews, 3(4), 1-14. DOI: 10.9734/jenrr/2019/v3i430113.

Nehme, B., M’Sirdi, N. K., Akiki, T., Naamane, A., & Zeghondy, B. (2021). Chapter 2 - Photovoltaic panels life span increase by control. In Predictive Modelling for Energy Management and Power Systems Engineering. 27-62. Editor(s): Ravinesh Deo, Pijush Samui, Sanjiban Sekhar Roy, DOI :10.1016/B978-0-12-817772-3.00002-1.

Okello, M.O. (2021). Time Governed Multi-Objective Optimization. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 16, 167-181. DOI:10.55549/epstem.1068585.

Okello, M.O. (2024). Panel Surface Area Maximization for Increasing PV Performance. MDPI Preprints. DOI:10.20944/preprints202405.1294.v2.

Parvez, M., Ahamad, T., Lal, S., Khan, O., Khalid, F., & Yahya, Z. (2024). Energy, Exergy, Economic, and environmental assessment of a trigeneration system for combined power, cooling, and water desalination system driven by solar energy. International Journal of Thermofluids, 22, 100694.

Qazi, A., Hussain, F., Rahim, N. A., Hardaker, G., Alghazzawi, D., Shaban, K., & Haruna, K. (2019). Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions. IEEE access, 7, 63837-63851.

Salem, A., Nassar, Y., & Yousif, S. (2004, August). The Choice of Solar Energy in the Field of Electrical Generation-Photovoltaic or Solar Thermal-For Arabic Region. In World Renewable Energy Congress VIII (WREC 2004).

Samad, H. A., Khandker, S. R., Asaduzzaman, M., & Yunusd, M. (2013). The benefits of solar home systems: An analysis from Bangladesh. World Bank Policy Research Working Paper N°6724. Available at SSRN: https://ssrn.com/abstract=2367084.

Sodhi, M., Banaszek, L., Magee, C., & Rivero-Hudec, M. (2022). Economic lifetimes of solar panels. Procedia CIRP, 105, 782-787. DOI: 10.1016/j.procir.2022.02.130.

Tian, X., Wang, J., Ji, J., & Xia, T. (2022). Comparative performance analysis of the flexible flat/curved PV modules with changing inclination angles. Energy Conversion and Management, 274, 116472–116472. DOI:10.1016/j.enconman.2022.116472.

Ubando, A.T.; Conversion, A.; Barroca, R.B.; Enano, N.H., Jr.; Espina, R.U. Computational Fluid Dynamics on Solar Dish in a Concentrated Solar Power: A Bibliometric Review. Solar 2022, 2, 251-273. DOI:10.3390/solar2020014.

Visa, I., Duta, A., Comsit, M., Moldovan, M., Ciobanu, D., Saulescu, R., & Burduhos, B. (2015). Design and experimental optimisation of a novel flat plate solar thermal collector with trapezoidal shape for facades integration. Applied Thermal Engineering, 90, 432-443. DOI: 10.1016/j.applthermaleng.2015.06.026.

Walter, A. R. (1996). A vector product in R2. International Journal of Mathematical Education in Science and Technology, 27(4), 535–538. https://doi.org/10.1080/0020739960270407.

Wong, J. Y. (2015). Ultra-portable solar-powered 3D printers for onsite manufacturing of medical resources. Aerospace medicine and human performance, 86(9), 830-834. DOI: 10.3357/AMHP.4308.2015.

Zhang, J. and Hua, S. (2024) ‘Ship longitudinal structural stiffening for navigating turbulent water environment’, Int. J. Vehicle Systems Modelling and Testing. DOI: https://doi.org/10.1504/ijvsmt.2024.10065317.

Zhong, Q., & Tong, D. (2020). Spatial layout optimization for solar photovoltaic (PV) panel installation. Renewable energy, 150, 1-11. DOI: 10.1016/j.renene.2019.12.099.

Web sites

Adam Zewe, (December 9, 2022) Paper-thin solar cell can turn any surface into a power source. |MIT News| Massachusetts Institute of Technology Url: https://news.mit.edu/2022/ultrathin-solar-cells-1209.

Similar Articles

You may also start an advanced similarity search for this article.