Low-Cost Real-Time Monitoring for Enhanced Efficiency in PV Systems

Main Article Content

Abdelkrim Rouabhia
Rachid Dabou
Abdelkader Abderrahmane
Abderrezzaq Ziane
Ahmed Bouraiou
Seyfallah Khelifi
Nordine Sahouane
Ammar Necaibia
Mohamed Blal

Abstract

In this paper, we successfully created a low-cost, facile and reliable solution for real-time monitoring of grid-connected photovoltaic (PV) system. Our solution simplifies the connection and access to database of system performances, dependent on various parameters and environmental conditions. The real-time monitoring enables swift fault rectification, enhancing system efficiency, and providing insights into energy consumption of the PV system. We implemented our solution using low-cost electronic devices and sensors connected to 1.75 kW PV system installed in Adrar city situated in the Saharan region of southern Algeria. The electrical characteristics were measured using multiple sensors and stored in SD memory card and in server. Following the design and implementation of our data acquisition system for monitoring parameters from grid-connected photovoltaic system, we conducted a comparative study with the Fluke 2635A HYDRA Series II data acquisition system. The proposed system can be easily scaled to monitor higher power and larger PV stations with minimal adjustments by changing the high-range sensors and their parameters in the software.

Article Details

Section

Articles

How to Cite

[1]
“Low-Cost Real-Time Monitoring for Enhanced Efficiency in PV Systems”, J. Ren. Energies, vol. 28, no. 1, pp. 81 – 92, Jun. 2025, doi: 10.54966/4zje4h64.

References

Abderrezzaq, Z., Ammar, N., Rachid, D., Draou, M. D., Mohamed, M., & Nordine, S. (2017). Performance analysis of a grid connected photovoltaic station in the region of Adrar. 2017 5th International Conference on Electrical Engineering - Boumerdes (ICEE-B), 2017-Janua, 1–6. DOI:10.1109/ICEE-B.2017.8192229.

Afsher, P. A., & Manoj Kumar, M. V. (2023). Performance analysis of a 50 kW grid-tied PV system on energy productivity in a technical institution building and mitigation method to improve the low power factor problem. Renewable Energy Focus, 46, 126–135. DOI:10.1016/j.ref.2023.05.009.

Agoundedemba, M., Kim, C. K., & Kim, H. G. (2023). Energy Status in Africa: Challenges, Progress and Sustainable Pathways. In Energies, 16(23). Multidisciplinary Digital Publishing Institute (MDPI). DOI: 10.3390/en16237708.

Aravindan M, Madhan Kumar V, Hariharan, V.S., Tharun Narahari, Arun Kumar P, Madhesh K, Kumar, P. (2023). Fuelling the future: A review of non-renewable hydrogen production and storage techniques. In Renewable and Sustainable Energy Reviews. 188. 113791. DOI:10.1016/j.rser.2023.113791.

Asgher, M. N., & Iqbal, M. T. (2023). Development of a Low-Cost, Open-Source LoRA-based SCADA System for Remote Monitoring of a Hybrid Power System for an Offshore Aquaculture Site in Newfoundland. European Journal of Electrical Engineering and Computer Science, 7(6), 65–73. DOI:10.24018/ejece.2023.7.6.589.

Chabachi, S., Necaibia, A., Abdelkhalek, O., Bouraiou, A., Ziane, A., & Hamouda, M. (2022). Performance analysis of an experimental and simulated grid connected photovoltaic system in southwest Algeria. International Journal of Energy and Environmental Engineering, 0123456789. DOI: 10.1007/s40095-022-00474-9.

Chen, S. L., Chou, H. S., Huang, C. H., Chen, C. Y., Li, L. Y., Huang, C. H., Chen, Y. Y., Tang, J. H., Chang, W. H., & Huang, J. S. (2023). An Intelligent Water Monitoring IoT System for Ecological Environment and Smart Cities. Sensors (Basel, Switzerland), 23(20). DOI:10.3390/s23208540.

Ciocia, A., Di Leo, P., Malgaroli, G., Russo, A., Spertino, F., & Tzanova, S. (2020). Innovative teaching on photovoltaic generation. 11th National Conference with International Participation, ELECTRONICA 2020 - Proceedings. DOI:10.1109/ELECTRONICA50406.2020.9305110.

Coban, H. H., Lewicki, W., Miskiewicz, R., & Drozdz, W. (2023). The Economic Dimension of Using the Integration of Highway Sound Screens with Solar Panels in the Process of Generating Green Energy. Energies, 16(1). DOI: 10.3390/en16010178.

Coldrick, K., Walshe, J., McCormack, S. J., Doran, J., & Amarandei, G. (2023). Experimental and Theoretical Evaluation of a Commercial Luminescent Dye for PVT Systems. Energies, 16(17). DOI: 10.3390/en16176294.

Dupont, I. M., Carvalho, P. C. M., Jucá, S. C. S., & Neto, J. S. P. (2019). Novel methodology for detecting non-ideal operating conditions for grid-connected photovoltaic plants using Internet of Things architecture. Energy Conversion and Management, 200. DOI:10.1016/j.enconman.2019.112078.

El Hammoumi, A., Motahhir, S., Chalh, A., El Ghzizal, A., & Derouich, A. (2018). Low-cost virtual instrumentation of PV panel characteristics using Excel and Arduino in comparison with traditional instrumentation. Renewables: Wind, Water, and Solar, 5(1). DOI: 10.1186/s40807-018-0049-0.

Gorjian, S., Bousi, E., Özdemir, Ö. E., Trommsdorff, M., Kumar, N. M., Anand, A., Kant, K., & Chopra, S. S. (2022). Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology. In Renewable and Sustainable Energy Reviews, 158. Elsevier Ltd. DOI:10.1016/j.rser.2022.112126.

Hossain, M. J., Ahmed, S. I., Monir, M. U., Salman, H. M., Techato, K., & Chowdhury, S. (2023). Natural resources overusing in oil, gas, and petrochemical industries and challenges. In Crises in Oil, Gas and Petrochemical Industries: Disasters and Environmental Challenges (pp. 393–418). Elsevier. DOI:10.1016/B978-0-323-95154-8.00013-X.

Katche, M. L., Makokha, A. B., Zachary, S. O., & Adaramola, M. S. (2023). A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems. In Energies, 16(5). MDPI. DOI: 10.3390/en16052206.

Khan, F. A., Pal, N., & Saeed, S. H. (2021). Stand-alone hybrid system of solar photovoltaics/wind energy resources: an eco-friendly sustainable approach. In Renewable Energy Systems. 687–705. DOI: 10.1016/b978-0-12-820004-9.00030-9.

Mansour, D. E. A., Numair, M., Zalhaf, A. S., Ramadan, R., Darwish, M. M. F., Huang, Q., Hussien, M. G., & Abdel-Rahim, O. (2023). Applications of IoT and digital twin in electrical power systems: A comprehensive survey. In IET Generation, Transmission and Distribution. 17(20), 4457–4479. DOI:10.1049/gtd2.12940.

Marcelino, C. G., Leite, G. M. C., Wanner, E. F., Jiménez-Fernández, S., & Salcedo-Sanz, S. (2023). Evaluating the use of a Net-Metering mechanism in microgrids to reduce power generation costs with a swarm-intelligent algorithm. Energy, 266. DOI:10.1016/j.energy.2022.126317.

Rajput, S. K., & Dheer, D. K. (2023). Forecasting power-factor reductions in rooftop PV-integrated industrial power systems: Mathematical modelling and experimental validation. Sustainable Energy, Grids and Networks, 33. DOI:10.1016/j.segan.2022.100974.

Rampinelli, G. A., Krenzinger, A., & Chenlo Romero, F. (2014). Mathematical models for efficiency of inverters used in grid connected photovoltaic systems. In Renewable and Sustainable Energy Reviews . 34, 578–587. DOI:10.1016/j.rser.2014.03.047.

Shafiullah, M., Ahmed, S. D., & Al-Sulaiman, F. A. (2022). Grid Integration Challenges and Solution Strategies for Solar PV Systems: A Review. IEEE Access, 10, 52233–52257. DOI:10.1109/ACCESS.2022.3174555.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)