Speed regulator and hysteresis based on artificial intelligence techniques of three-level DTC with 24 sectors for induction machine

Main Article Content

Habib Benbouhenni
Rachid Taleb

Abstract

Direct torque control (DTC) of induction motor (IM) is important in many applications. In this paper presents a three-level direct torque control with 24 sectors is applied for IM using PI-flou controller and hysteresis regulators based in artificial intelligence techniques. The DTC system is known to offer fast decoupled control between torque and flux via a simple control structure. Nevertheless, DTC system has two major drawbacks, with are the variable inverter switching frequency and high torque output ripple. The validity of the proposed control scheme is verified by simulation tests. The stator flux, torque, and current are determined and compared to the above technique.

Article Details

Section

Articles

How to Cite

[1]
“Speed regulator and hysteresis based on artificial intelligence techniques of three-level DTC with 24 sectors for induction machine”, J. Ren. Energies, vol. 20, no. 2, pp. 231–242, Jun. 2017, doi: 10.54966/jreen.v20i2.623.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 > >>