Experimental and CFD Analysis of a Solar Air Heater Integrated with Ribs Filled with PCM Materials: Drying applications
Main Article Content
Abstract
The major challenge of renewable energies, including solar, is their intermittent nature. Therefore, the issue of energy storage becomes crucial to meet demand when the main source is not available. In this context, this article aims to improve the thermal performance of a solar air collector by integrating a latent heat storage system. Both numerical and experimental procedures were achieved, allowing the characterization of the conventional solar air heater’s operation and highlighting its efficiency dependence on solar radiation. A 2D transient numerical analysis using an enthalpy-based phase change model, based on the finite volume method (ANSYS Fluent), was conducted to compare two collectors: the first without storage and the second with PCM storage. Experimental data on solar radiation and ambient temperature were introduced as time-varying boundary conditions to account for the intermittency of real weather conditions. The results highlighted the charging and discharging phases of the storage system. It was observed that the use of phase change materials (PCM) improves the solar collector’s performance during the afternoon (when solar radiation intensity decreases) by improving its efficiency and extending its operating period for drying purposes.
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
How to Cite
References
Aadmi, M., Karkri, M., Trigui, A., Elhammouti, M., Foi, M. (2013). Modélisation du stockage et déstockage d’énergie dans un composite chargé avec un matériau à changement de phase, Congres français de Thermique.
Abdalaali, Z.A., Dakhil, S.F., Jabbar, T. A. (2022). Thermal Enhancement for Solar Water Heating System by Using Phase-change Materials. Proceedings of 2nd International Multi-Disciplinary Conference Theme: Integrated Sciences and Technologies, IMDC-IST 2021, 7-9 September 2021, Sakarya, Turkey. DOI : 10.4108/eai.7-9-2021.2314777.
Boukadoum, A. B., Bourabaa, A., El Mokretar, S., Semai, H. and Amari, A. (2023). Numerical Study of Sensible Thermal Storage in Solar Collectors for Air Heating Applications, 14th International Renewable Energy Congress (IREC), Sousse, Tunisia, 1-6, doi: 10.1109/IREC59750.2023.10389286.
Boulemtafes-Boukadoum, A., Benaouda, N., Derbal-Mokrane, H., Benzaoui, A. (2008). Analyse énergétique et thermique du processus de séchage de la menthe par énergie solaire, Revue des Energies Renouvelables SMSTS’08 Alger. 89 – 96.
Buonomo B., Ercole D., Manca O., Nardini S. (2017). Numerical investigation on thermal behaviors of two-dimensional latent thermal energy storage with PCM and aluminium foam. Journal of Physics: Conference Series. 796. 012031. 10.1088/1742-6596/796/1/012031.
Ferfera, R.S. (2020). Analyse numérique et expérimentale des performances thermiques d’un échangeur de chaleur équipé d’une structure cellulaire imbibée de matériaux à changement de phase. Doctorate thesis. Université des sciences et technologies Houari Boumedienne, 2020.
Guichard, S. (2013). Contribution à l’étude des parois complexes intégrant des matériaux à changements de phase : modélisation, expérimentation, et évaluation de la performance énergétique globale. Matériaux composites et construction. Doctorate thesis. Université de la Réunion. https://theses.hal.science/tel-01379518.
Haillot, D. (2024). Projet ANR, Résumé, Laboratoire de thermique, énergétique et procédées, Université de Pau et des Pays de l’Adour.
Jones, B.J., Sun, D., Krishnan, S., Garimella, S.V. (2006). Experimental and Numerical Study of Melting in a Cylinder, Int. J. Heat Mass Transfer, 49, 2724–2738.
Kulakowski, T., Heim, D., Knera, D. (2023). Full-scale validation of PCM-window energy model using the coupled thermo-optical approach. Building and Environment, 245, 110923, DOI: 10.1016/j.buildenv.2023.110923.
Muhammad, M.D., Badr O., Yeung, H. (2015) Validation of a CFD Melting and Solidification Model for Phase Change in Vertical Cylinders, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 68 :5, 501-511, DOI: 10.1080/10407782.2014.994432
Parsa, H., Saffar-Avval, M., Hajmohammadi, M.R., Ahmadibeni, G. (2023). Improvement of solar air heaters performance with PCM-filled baffles and storage bed, International Journal of Mechanical Sciences. 260, 108629, Iran.
Raj, A.K., Srinivas, M., Jayaraj, S. (2020). Transient CFD Analysis of Macro-Encapsulated Latent Heat Thermal Energy Storage Containers Incorporated within Solar Air Heater, International Journal of Heat and Mass Transfer 156.
Swaminathan, C., Voller, V. (1992). A general enthalpy method for modeling solidification processes, Metall. Mater. Trans. B 23 (5) (1992) 651–664.
Tuncer, A.D., Amini, A., Khanlari, A. (2023). Experimental and transient CFD analysis of parallel-flow solar air collectors with paraffin-filled recyclable aluminium cans as latent heat energy storage unit, Journal of Energy Storage, 70, 108009. https://doi.org/10.1016/j.est.2023.108009.
Zhang, X.Y., Ge , Y.T., Burra, Lang, P.Y. (2024). Experimental investigation and CFD modelling analysis of finned-tube PCM heat exchanger for space heating. Applied Thermal Engineering, 244, 122731. DOI: 10.1016/j.applthermaleng.2024.122731.
Zhongbin Zhang , Zhehao Zhu, Thermodynamic performance improvement of the horizontal shelland- tube latent heat thermal storage unit by splitter plates and upper-and-lower cascade PCMs, Journal of Energy Storage 83 (2024) 110802, 2024.