Burkholderia Fungorum, A promoter biological tool for heavy metals bioresorption
Main Article Content
Abstract
In this work, we studied the effect of Burkholderia fungorum strain Bf01 bacterium on three heavy metals bioresorption: cadmium, copper and zinc. The heavy metals bacterium resistance was studied in liquid minimum standard medium, added with increasing metals concentrations. Furthermore, the Burkholderia fungorum strain Bf01 was monitored during its growth for its capacity to reduce high metals. The strain Bf01 showed high Minimal Inhibitory Concentrations about (1500 mg/L, 400 mg/L and 50 mg/L) for Cadmium, Zinc and Copper, respectively. Therefore, it was assumed that Burkholderia fungorum strain Bf01 had a high metals resistance degree especially for cadmium and it exhibited a high adsorption affinity and removal metals from bacterial suspensions. As a result, Burkholderia fungorum strain Bf01 presents an excellent biological tool for heavy metals bioresorption for its efficiency, reliability and low cost.
Article Details
Section

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
How to Cite
References
Altimira, F., C. Yanez, G. Bravo, M. Gonzalez, L. A. Rojas, and M. Seeger. n.d. "Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile. ." BMC microbiology, 12 (1): 1-12.
Alwaleed, E. A., A. A. A. Latef, and E. S. Mostafa. 2021. "Biosorption efficacy of living and non-living algal cells of Microcystis aeruginosa to toxic metals." Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49 (1): 12149-12149.
Andreazza, R., S. Pieniz, B. C. Okeke, and F. A. D. O Camargo. 2011. " Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption." Brazilian Journal of Microbiology, 42: 66-74.
Banach, A. M., A. Kuzniar, J. Grzadziel, and A. Wolinska. 2020. "Azolla filiculoides L. as a source of metal-tolerant microorganisms." PloS one, 15 (5): e0232699.
Beisl, S., S. Monteiro, R. Santos, A. S. Figueiredo, M. G. Sanchez-Loredo, M. A. Lemos, and M. N. De Pinho. 2019. "Synthesis and bactericide activity of nanofiltration composite membranes–Cellulose acetate/silver nanoparticles and cellulose acetate/silver ion exchanged zeolites." Water research, 149: 225-231.
Bhakta, J. N., Y. Munekage, K. Ohnishi, B. B. Jana, and J. L Balcazar. 2014. " Isolation and characterization of cadmium-and arsenic-absorbing bacteria for bioremediation. ." Water, Air, & Soil Pollution, 225: 1-10.
Blaga, A.C., C. Zaharia, and D. Suteu. 2021. "Polysaccharides as support for microbial biomass-based adsorbents with applications in removal of heavy metals and dyes." Polymers 13 (17): 2893.
Camargo, F. P., P. Sérgio Tonello, A. C. A. dos Santos, and I. C. S. Duarte. 2016. "Removal of toxic metals from sewage sludge through chemical, physical, and biological treatments—a review. ." 227: 1-11.
Chaemiso, T. D., and T. Nefo. 2019. "Removal methods of heavy metals from laboratory wastewater. ." . Journal of Natural Sciences Research, 9 (2): 36-42.
Chang, J.S., R. Law, and C.C. Chang. 1997. "Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21." Water research, 31 (7): 1651-1658.
Chatterjee, S., I. Ghosh, and K. K. Mukherjea. 2011. "Uptake and removal of toxic Cr (VI) by Pseudomonas aeruginosa: physico-chemical and biological evaluation." Current Science, 645-652.
Choinska-Pulit, A., J. Sobolczyk-Bednarek, and W. Laba. 2018. "Optimization of copper, lead and cadmium biosorption onto newly isolated bacterium using a Box-Behnken design." Ecotoxicology and environmental safety 149: 275-283.
Chug, R., S., Kothari, S. L. Mathur, and V. S. Gour. 2021. " Maximizing EPS production from Pseudomonas aeruginosa and its application in Cr and Ni sequestration. ." Biochemistry and Biophysics Reports, 26: 100972.
Congeevaram, S., S. Dhanarani, J. Park, M. Dexilin, and K. Thamaraiselvi. 2007. "Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. ." Journal of hazardous materials, 146 ((1-2)): 270-277.
Damodaran, D., G. Suresh, and R. Mohan. 2011. "Bioremediation of soil by removing heavy metals using Saccharomyces cerevisiae. ."
Fan, J., T. O. Okyay, and D. F. Rodrigues. 2014. "The synergism of temperature, pH and growth phases on heavy metal biosorption by two environmental isolates." Journal of hazardous materials,. 279: 236-243.
Filote, C., M. Rosca, and R.M. Hlihor. 2020. "Overview of using living and non-living microorganisms for the removal of heavy metals from wastewaters." Research Journal of Agricultural Science, 52(4). 52 (4).
Fu, F., and Q. Wang. 2011. "Removal of heavy metal ions from wastewaters: a review. ." Journal of environmental management 92 (3): 407-418.
Fu, Z., and S. Xi. 2020. "The effects of heavy metals on human metabolism." Toxicology mechanisms and methods, . 30 (3): 167-176.
Ganesan, A. R., K. Subramani, B. Balasubramanian, W. C. Liu, M. V. Arasu, N. A. Al-Dhabi, and V. Duraipandiyan. 2020. "Evaluation of in vivo sub-chronic and heavy metal toxicity of under-exploited seaweeds for food application." Journal of King Saud University-Science, 32 (1): 1088-1095.
Howard, J. L., and J. Shu. 1996. " Sequential extraction analysis of heavy metals using a chelating agent (NTA) to counteract resorption." Environmental Pollution, 91 (1): 89-96.
Howard, J. L., and W. J. Vandenbrink. 1999. "Sequential extraction analysis of heavy metals in sediments of variable composition using nitrilotriacetic acid to counteract resorption." Environmental Pollution 106 (3): 285-292.
Jiang, C. Y., X. F. Sheng, M. Qian, and Q. Y. Wang. 2008. "Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil." Chemosphere, 72 (2): 157-164.
Liu, X. X., X. Hu, Y. Cao, W. J. Pang, J. Y. Huang, P. Guo, and L. Huang. 2019. "Biodegradation of phenanthrene and heavy metal removal by acid-tolerant Burkholderia fungorum FM-2. ." Frontiers in microbiology, 10: 408.
Maier, R. M., and I. L. Pepper. 2015. "Bacterial growth." Environmental microbiology (Academic Press.) 37-56.
Medfu Tarekegn, M., F. Zewdu Salilih, and A. I. Ishetu. 2020. "Microbes used as a tool for bioremediation of heavy metal from the environment." Cogent Food & Agriculture,. 6 (1): 1783174.
Naveed, S., C. Li, X. Lu, S. Chen, B. Yin, C. Zhang, and Y. Ge. n.d. "Microalgal extracellular polymeric substances and their interactions with metal (loid) s: A review. ." MCritical Reviews in Environmental Science and Technology, 49 (19): 1769-1802.
Oubohssaine, M., L. Sbabou, and J. Aurag. 2022. "Native heavy metal-tolerant plant growth promoting rhizobacteria improves Sulla spinosissima (L.) growth in post-mining contaminated soils." Microorganisms 10 (5): 838.
Oziegbe, O., A. O. Oluduro, E. J. Oziegbe, E. F. Ahuekwe, and S. J. Olorunsola. 2021. "Assessment of heavy metal bioremediation potential of bacterial isolates from landfill soils." Saudi Journal of Biological Sciences, 28 (7): 3948-3956.
Pardo, R., M. Herguedas, E. Barrado, and M. Vega. 2003. "Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida." 376 (1): 26-32.
Pratama, N. A., Rahardja, B. S., & Sari, L. A. 2020. " The effect of density as Skeletonema costatum bioremediation agent of copper (Cu) heavy metal concentration." IOP Conference Series: Earth and Environmental Science 441 (1): 01.
Priya, A. K., L. Gnanasekaran, K. Dutta, S. Rajendran, D. Balakrishnan, and M. Soto-Moscoso. 2022. "Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms." 307: 135957.
Qin, H., T. Hu, Y. Zhai, N. Lu, and J. Aliyeva. 2020. "The improved methods of heavy metals removal by biosorbents: A review." Environmental Pollution, 258: 113777.
Raihan, M. R. H., M. Rahman, N. U. Mahmud, M. K. Adak, T. Islam, M. Fujita, and M. Hasanuzzaman. 2022. "Application of Rhizobacteria, Paraburkholderia fungorum and Delftia sp. Confer Cadmium Tolerance in Rapeseed (Brassica campestris) through Modulating Antioxidant Defense and Glyoxalase Systems. ." Plants, 11 (20): 2738.
Rajesh, P., M. Athiappan, R. Paul, and K. D. Raj. 2014. "Bioremediation of cadmium by Bacillus safensis (JX126862), a marine bacterium isolated from mangrove sediments." International Journal of Current Microbiology and Applied Sciences,. 3 (12): 326-335.
Riseh, R. S., M. G. Vazvani, N. Hajabdollahi, and V. K. Thakur. 2022. "Bioremediation of Heavy Metals by Rhizobacteria." Applied Biochemistry and Biotechnology, 1-23.
Rizvi, A., B. Ahmed, A. Zaidi, and M. S. Khan. 2020. " Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: an efficient metal clean-up strategy. ." Environmental monitoring and assessment, 192: 1-21.
Sharma, P., and S. Kumar. 2021. "Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: Recent advances." Bioresource Technology, . 339: 125589.
Sharma, P., S. Tripathi, P. Chaturvedi, D. Chaurasia, and R. Chandra. 2021. "Newly isolated Bacillus sp. PS-6 assisted phytoremediation of heavy metals using Phragmites communis: Potential application in wastewater treatment." Bioresource technology 320: 124353.
Shim, J., J. W. Kim, P. J. Shea, and B. T. Oh. 2015. "Biosorption of cadmium by Citrobacter sp. JH 11-2 isolated from mining site soil. ." Separation Science and Technology, 50 (14): 2134-2141.
Shrestha, R., S. Ban, S. Devkota, S. Sharma, R. Joshi, A. P. Tiwari, and M. K Joshi. 2021. "Technological trends in heavy metals removal from industrial wastewater: A review." Journal of Environmental Chemical Engineering, 9 (4): 105688.
Sinha, S., and S. K. Mukherjee. 2009. " Pseudomonas aeruginosa KUCd1, a possible candidate for cadmium bioremediation." Brazilian Journal of Microbiology, 40: 655-662.
Untereiner, G. 2008. "Etude de l'impact de bactéries environnementales sur la spéculation de l'uranium en vue de processus de bioremédiation." Doctoral dissertation, , Institut national agronomique ., Paris-Grignon.
Verma, J. P., and D. K. Jaiswal. 2016. "Book review: advances in biodegradation and bioremediation of industrial waste."
Vijayaraghavan, K., and Y. S. Yun. 2008. "Bacterial biosorbents and biosorption. ." Biotechnology advances, 26 (3): 266-291.
Vishan, I., S. Sivaprakasam, and A. Kalamdhad. 2017. "Biosorption of lead using Bacillus badius AK strain isolated from compost of green waste (water hyacinth)." Environmental Technology 38, (13-14): 1812-1822.
Wang, C. L., P. C. Michels, S. C. Dawson, S. Kitisakkul, J. A. Baross, J. D. Keasling, and D. S. Clark. 1997. "Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic culture. ." Applied and Environmental Microbiology, 63 (19): 4075-4078.
Xu, W. H., Y. G. Liu, G. M. Zeng, L. I. Xin, H. X. Song, and Q. Q. Peng. 2009. "Characterization of Cr (VI) resistance and reduction by Pseudomonas aeruginosa. Transactions of Nonferrous Metals Society of China, 19(5), 1336-1341." Transactions of Nonferrous Metals Society of China, 19 (5): 1336-1341.
You, L. X., R. R. Zhang, J. X. Dai, Z. T. Lin, Y. P. Li, M. Herzberg, and C. Rensing. 2021. "Potential of cadmium resistant Burkholderia contaminans strain ZCC in promoting growth of soy beans in the presence of cadmium." Ecotoxicology and Environmental Safety 211: 111914.
Zaynab, M., R. Al-Yahyai, A. Ameen, Y. Sharif, L. Ali, M. Fatima, and S. Li. 2022. "Health and environmental effects of heavy metals. ." Journal of King Saud University-Science, . 34 (1): 101653.
Zhang, J. H., and H. Min. 2010. "Characterization of a multimetal resistant Burkholderia fungorum isolated from an e-waste recycling area for its potential in Cd sequestration." World journal of microbiology and biotechnology, (26) 2: 371-374.
Zhang, J., Q. Li, Y., Zhang, J. Zeng, G. Lu, Z. Dang, and C. Guo. 2019. "Bioaccumulation and distribution of cadmium by Burkholderia cepacia GYP1 under oligotrophic condition and mechanism analysis at proteome level." Ecotoxicology and environmental safety 176: 162-169.