Etude numérique de l’effet des générateurs de vortex longitudinaux sur le transfert thermique d’un écoulement laminaire traversant un micro-canal

Main Article Content

Azeddine Soudani
Zoubir Belkacemi
Imane Rahmoune

Abstract

We conducted, in this work, a three-dimensional numerical study of forced convection heat transfer of a laminar flow of water passing through micro-channels with and without longitudinal vortex generator, using the CFD code “Ansys- Fluent”. This work aimed to elucidate the effect of vortex generators on the dynamic and thermal behavior of the micro-fluidic flow. The results obtained show that the increase in the Reynolds number leads to an improvement in the quality of heat transfer in both cases of the study. Rectangular micro-channel with LVG can improve heat transfer compared to smooth rectangular micro-channel while consuming more pressure drop. In the range of Reynolds numbers between 200 and 1200, a 2-21% increase in the mean Nusselt number was observed for micro-channels with LVG compared to smooth micro-channels. This occurs through better mixing of the fluid, reduction in the thickness of the thermal boundary layer, and increased heat transfer area. In addition, the friction factor has been increased by more than 50% compared to smooth micro-channels, due to the local resistance of LVGs and the presence of secondary flows.

Article Details

How to Cite
[1]
A. . Soudani, Z. . Belkacemi, and I. . Rahmoune, “Etude numérique de l’effet des générateurs de vortex longitudinaux sur le transfert thermique d’un écoulement laminaire traversant un micro-canal”, J. Ren. Energies, vol. 25, no. 2, pp. 229 -, Dec. 2022.
Section
Articles

References

Li Y., Zhang F., Sunden B., Xie G., Laminar thermal performance of microchannel heat sinks with constructal vertical Y-shaped bifurcation plates. Applied Thermal Engineering, 2014, 73 (1): 185-195. doi 10.1016/j.applthermaleng.2014.07.031.

Tuckerman D.B., Pease R.F.W., High performance heat sinking for VLSI ; IEEE Electron Device Letters, 1981, 2 (5): 126-129. doi:10.1109/EDL.1981.25367.

Benladghem Dj., Analyse numérique de la convection forcée développée dans un micro-canal: étude comparative entre deux conduites à parois simples et à parois ondulées. Mémoire de master en Génie mécanique, Option génie Energétique, Université de Telemcen, 2014.

John Thom R., Micro-Two-Phase Cooling Systems, Encyclopedia Of Two-Phase Heat Transfer And Flow Iii Macro And Micro Flow Boiling And Numerical Modeling Fundamentals, 2010 (A 4-Volume Set), Vol.3.

Charef khodja N., Soudani A., Etude hydrodynamique et thermique des écoulements dans les micro-canaux, Edition Universitaire Européennes, 2013.

Kabar Y., Caractérisation des transferts convectifs a l’intérieur de mini- et de micro-canaux. Doctorat en Sciences de l'Université de Constantine - Doctorat de l'Université de Reims, Novembre 2010.

Morini G. L., Single-phase convective heat transfer in microchannels: a review of experimental results. International Journal of Thermal Sciences, 2004, 43(7): 631-651. https://doi.org/10.1016/j.ijthermalsci.2004.01.003.

Obot N.T, Toward a better understanding of friction and heat/mass transfer in micro-channels – a literature review, Microscale Therm. Eng. 2002, 6 (3):155–173. https://doi.org/10.1080/10893950290053295.

Croce G., D’Agaro P., Numerical analysis of roughness effect on micro-tube heat transfer, Superlattices and Microstructures, 2004, 35: 601–616. https://doi.org/10.1016/j.spmi.2003.09.014.

Tian L.T., Hi Y. L., Lei Y. G., Tao W. Q., Numerical study of fluid flow and heat transfer in a flat-plate channel with longitudinal vortex generators by applying field synergy principle analysis, Int. Commun. Heat Mass Tran, 2009, 36 (2): 111–120. doi: 10.1016/j.icheatmasstransfer.2008.10.018.

Kandlikar S. G., Joshi S., Tian S., Effect of surface roughness on heat transfer and fluid flow characteristics at low Reynolds numbers in small diameter tubs, Heat Transfer Engineering, 2003, 24 (3): 4-16. https://doi.org/10.1080/01457630304069.

Rosaguti N.R., Fletcher D.F., Haynes B.S., Low-Reynolds number-heattransfer enhancement in sinusoidal channels, Chem. Eng. Sci, 2007, 62: 694–702. doi : 10.1016/j.ces.2006.09.045.

Hamdi Ahmed E., Impact of Delta-Winglet Pair of Vortex Generators on the Thermal and Hydraulic Performance of a Triangular Channel Using Al2O3–Water Nanofluid, Journal of Heat Transfer, 2014, 136(2): 021901(9 pages). https://doi.org/10.1115/1.4025434

Ebrahimi A., Roohi E., Kheradmand S., Numerical study of liquid flow and heat transfer in a rectangular microchannel with longitudinal vortex generators, Applied Thermal Engineering, 2015, 78: 576–583. doi: 10.1016/j.applthermaleng.2014.12.006.

L.H. Tang, W.X. Chu, N. Ahmed, and M. Zeng, A New Configuration of Winglet Longitudinal Vortex Generator to Enhance Heat Transfer in a Rectangular Channel, Applied Thermal Engineering, 2016, 104 (5): 74-84.

Wu H.Y., Cheng P., Friction factors in smooth trapezoidal silicon micro-channels with different aspect ratios, Int. J. Heat Mass Transfer, 2003, 46: 2519-2525. DOI: doi.org/10.1016/S0017-9310(03)00106-6.

Datta A., Sanyal D., Das A., Numerical investigation of heat transfer in microchannels using inclined longitudinal vortex generator, Applied Thermal Engineering, 2016, 108 (5): 1008-1019

D.Lelea, S.Nishio and K.Takano: The expérimentale research on micro-tube heat transfer and fluid flow of distilled water, Int. J. Heat and Mass Transfer, 2016, 47: 2817-2830. doi:10.1016/j.ijheatmasstransfer.2003.11.034.

Chen C., Teng J., Cheng C., A study on fluid flow and heat transfer in rectangular microchannels with various longitudinal vortex generators, International Journal of Heat and Mass Transfer, 2014, 69: 203-214.

https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.018

Rezazadeh R., Pourmahmoud N., Asaadi S., Numerical investigation and performance analyses of rectangular mini-channel with deferent types of ribs and their arrangements, International journal of thermal sciences, 2018, 132: 76-85. doi: 10.1016/j.ijthermalsci.2018.05.048.

Korniliou S., Ebullition dans les micro canaux : influence du rapport d’aspect sur le transfert thermique local, Thèse de Doctorat en Mécanique Energétique, Université d’Edimbourg – Ecosse, 2018.

Qu W., Mala Gh. M., Li D. D., Heat transfer for water flow in trapezoidal silicone micro-channels, International Journal of Heat and Mass Transfer, 2000, 43: 3925-3936. doi:10.1016/S0017-9310(00)00045-4.

Merzoug C., Ouahchi I., Influence des générateurs de vortex longitudinaux (LVG) sur le transfert thermique dans un micro-canal, Mémoire de Master II, Faculté des Sciences de la Matière, Université de Batna 1, 2020.

Liu C., Teng J. T., Chu J. C., Chiu Y. L., Experimental investigations on liquid flow and heat transfer in a rectangular microchannel with longitudinal vortex generators. International Journal of Heat and Mass Transfer, 2011, 54(13): 3069-3080. doi: 10.1016/j.ijheatmasstransfer.2011.02.030.

Tiselj I., Hetsroni G., Mavko B., Mosyak A., Pogrebhyak E., Segal Z., Effect of axial conduction on the heat transfer in micro-channels, International Journal of Heat and Mass Transfer, 2004, 47: 2551–2565. doi:10.1016/j.ijheatmasstransfer.2004.01.008.

Ma J., Y., Huang Y. P., Huang J., Wang Y. L., Wang Q. W., Experimental investigations on single-phase heat transfer enhancement with longitudinal vortices in a narrow rectangular channel, Nucl. Eng. Des, 2010, 240 (1): 92-102.

https://doi.org/10.1016/j.nucengdes.2009.10.015.

Sabaghan A., Edalatpour M., Moghadem M., Nanofluid flow and heat transfer in a microchannel with longitudinal vortex generators: Two-phase numerical simulation, Applied thermal engineering, 2016, 100: 179-189.

https://doi.org/10.1016/j.applthermaleng.2016.02.020. [28] Goldberg, N., Narrow Channel Forced Air Heat Sink, IEEE Trans. on Components, Hybrids, and Manufacturing Technology, 1984, Vol. 7, No. 1: 154–159.