Improving Photovoltaic Technology by Nanomaterials: a Brief Review

Main Article Content

Abdellah Hassaine
Amale Mahi


Nanomaterials have unique opto-electronic properties that can aid in the progress of current photovoltaic technology in various aspects and aid in the global transition towards renewable energy sources. In this brief review we discuss how might these materials contribute to newer designs of photovoltaic cells that surpass common Silicon cells and render this technology more efficient and more cost-effective. The types of nanostructures that we discuss are: nanotubes, nanowires, nanorods, graphene and nanotextures.

Article Details

How to Cite
A. . Hassaine and A. . Mahi, “Improving Photovoltaic Technology by Nanomaterials: a Brief Review”, J. Ren. Energies, vol. 1, no. 1, pp. 83 -, Sep. 2023.


‘Solar PV – Analysis’, IEA.; [accessed 3 February 2023].

Michael Woodhouse et al., ‘On the path to SunShot: the role of advancements in solar photovoltaic efficiency, reliability, and costs’, National Renewable Energy Laboratory, NREL/TP-6A20-6587, 2016.

Taylor, N. and Jager-Waldau, A., ‘Photovoltaics: technology development report 2020.’; [accessed 29 June 2022].

L. C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, and L. Redorici, ‘Silicon solar cells: toward the efficiency limits’, Advances in Physics: X, vol. 4, no. 1, p. 1548305, 2019. doi: 10.1080/23746149.2018.1548305.

D. Angmo and F. C. Krebs, ‘Flexible ITO-free polymer solar cells’, J. Appl. Polym. Sci., vol. 129, no. 1, pp. 1–14, 2013. doi: 10.1002/app.38854.

M. el A. Boukli Hacene, D. Lucache, H. Rozale, and A. Chahed, ‘Renewable Energy in Algeria: Desire and Possibilities’, Journal of Asian and African Studies, vol. 55, no. 7, pp. 947–964, 2020. doi: 10.1177/0021909619900202.

I. Jeon, Y. Matsuo, and S. Maruyama, ‘Single-Walled Carbon Nanotubes in Solar Cells’, Top Curr Chem (Z), vol. 376, no. 1, pp. 1–28, 2018. doi: 10.1007/s41061-017-0181-0.

J. Chen, D.D. Tune, K.Ge, H.Li, and B.S. Flavel, ‘Front and Back-Junction Carbon Nanotube-Silicon Solar Cells with an Industrial Architecture’, Adv. Funct. Master., vol. 30, no. 17, p. 2000484, 2020. Doi: 10.1002/adfm.202000484.

L. Wieland, H. Li, C. Rust, J. Chen, and B. S. Flavel, ‘Carbon Nanotubes for Photovoltaics: From Lab to Industry’, Advanced Energy Materials, vol. 11, no. 3, p. 2002880, 2021. doi: 10.1002/aenm.202002880.

E. Muchuweni, E. T. Mombeshora, B. S. Martincigh, and V. O. Nyamori, ‘Recent Applications of Carbon Nanotubes in Organic Solar Cells’, Front Chem, vol. 9, p. 733552, 2022. doi: 10.3389/fchem.2021.733552.

Z. Wu et al., ‘Transparent, Conductive Carbon Nanotube Films’, Science, vol. 305, no. 5688, pp. 1273–1276, 2004. doi: 10.1126/science.1101243.

J. Zhang et al., ‘High-Performance ITO-Free Perovskite Solar Cells Enabled by Single-Walled Carbon Nanotube Films’, Advanced Functional Materials, vol. 31, no. 37, p. 2104396, 2021. doi: 10.1002/adfm.202104396.

I. Jeon et al., ‘Carbon nanotubes versus graphene as flexible transparent electrodes in inverted perovskite solar cells’, The Journal of Physical Chemistry Letters, vol. 8, no. 21, pp. 5395–5401, 2017. doi: 10.1021/acs.jpclett.7b02229.

Y. Bai, I. Mora-Sero, F. De Angelis, J. Bisquert, and P. Wang, ‘Titanium Dioxide Nanomaterials for Photovoltaic Applications’, Chem. Rev., vol. 114, no. 19, pp. 10095–10130, 2014. doi: 10.1021/cr400606n.

X. Hou, K. Aitola, and P. D. Lund, ‘TiO2 nanotubes for dye-sensitized solar cells—A review’, Energy Science & Engineering, vol. 9, no. 7, pp. 921–937, 2021. doi: 10.1002/ese3.831.

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, ‘Nanowire Solar Cells’, Annu. Rev. Mater. Res., vol. 41, no. 1, pp. 269–295, 2011. doi: 10.1146/annurev-matsci-062910-100434.

L. Tsakalakos, ‘Nanostructures for photovoltaics’, Materials Science and Engineering: R: Reports, vol. 62, no. 6, pp. 175–189, 2008. doi: 10.1016/j.mser.2008.06.002.

W. Q. Xie, J. I. Oh, and W. Z. Shen, ‘Realization of effective light trapping and omnidirectional antireflection in smooth surface silicon nanowire arrays’, Nanotechnology, vol. 22, no. 6, p. 065704, 2011. doi: 10.1088/0957-4484/22/6/065704.

T.-J. Hsueh et al., ‘Si Nanowire-Based Photovoltaic Devices Prepared at Various Temperatures’, IEEE Electron Device Letters, vol. 31, no. 11, pp. 1275–1277, 2010. doi: 10.1109/LED.2010.2068274.

S.-H. Chen, K.-Y. Kuo, K.-H. Tsai, and C.-Y. Chen, ‘Light Trapping of Inclined Si Nanowires for Efficient Inorganic/Organic Hybrid Solar Cells’, Nanomaterials, vol. 12, no. 11, Art. no. 11, 2022. doi: 10.3390/nano12111821.

T. Rahman, M. Navarro-Cia, and K. Fobelets, ‘High density micro-pyramids with silicon nanowire array for photovoltaic applications’, Nanotechnology, vol. 25, no. 48, p. 485202, 2014. doi: 10.1088/0957-4484/25/48/485202.

A. Omar and H. Abdullah, ‘Electron transport analysis in zinc oxide-based dye-sensitized solar cells: A review’, Renewable and Sustainable Energy Reviews, vol. 31, pp. 149–157, 2014. doi: 10.1016/j.rser.2013.11.031.

G. Kartopu et al., ‘Photovoltaic performance of CdS/CdTe junctions on ZnO nanorod arrays’, Solar Energy Materials and Solar Cells, vol. 176, pp. 100–108, 2018. doi: 10.1016/j.solmat.2017.11.036.

A. Wibowo et al., ‘ZnO nanostructured materials for emerging solar cell applications’, RSC Advances, vol. 10, no. 70, pp. 42838–42859, 2020. doi: 10.1039/D0RA07689A.

S.-B. Kang, Y.-J. Noh, S.-I. Na, and H.-K. Kim, ‘Brush-painted flexible organic solar cells using highly transparent and flexible Ag nanowire network electrodes’, Solar Energy Materials and Solar Cells, vol. 122, pp. 152–157, 2014. doi: 10.1016/j.solmat.2013.11.036.

J. Chen et al., ‘Solution-processed copper nanowire flexible transparent electrodes with PEDOT:PSS as binder, protector and oxide-layer scavenger for polymer solar cells’, Nano Res., vol. 8, no. 3, pp. 1017–1025, 2015. doi: 10.1007/s12274-014-0583-z.

V. Scardaci, ‘Copper Nanowires for Transparent Electrodes: Properties, Challenges and Applications’, Applied Sciences, vol. 11, no. 17, p. 8035, 2021. doi:

N. Ye et al., ‘High-Performance Bendable Organic Solar Cells With Silver Nanowire-Graphene Hybrid Electrode’, IEEE Journal of Photovoltaics, vol. 9, no. 1, pp. 214–219, 2019. doi: 10.1109/JPHOTOV.2018.2876998.

G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, ‘The application of graphene as electrodes in electrical and optical devices’, Nanotechnology, vol. 23, no. 11, p. 112001, 2012. doi: 10.1088/0957-4484/23/11/112001.

M. Z. Iqbal and A.-U. Rehman, ‘Recent progress in graphene incorporated solar cell devices’, Solar Energy, vol. 169, pp. 634–647, 2018. doi: 10.1016/j.solener.2018.04.041.

X. Li et al., ‘Graphene-On-Silicon Schottky Junction Solar Cells’, Advanced Materials, vol. 22, no. 25, pp. 2743–2748, 2010. doi: 10.1002/adma.200904383.

S. Aftab, M. Z. Iqbal, S. Alam, and M. Alzaid, ‘Effect of an optimal oxide layer on the efficiency of graphene-silicon Schottky junction solar cell’, International Journal of Energy Research, vol. 45, no. 12, pp. 18173–18181, 2021. doi: 10.1002/er.6962.

E. Lamanna et al., ‘Mechanically Stacked, Two-Terminal Graphene-Based Perovskite/Silicon Tandem Solar Cell with Efficiency over 26%’, Joule, vol. 4, no. 4, pp. 865–881, 2020. doi: 10.1016/j.joule.2020.01.015.

J. Y.-H. Chai, B. T. Wong, and S. Juodkazis, ‘Black-silicon-assisted photovoltaic cells for better conversion efficiencies: a review on recent research and development efforts’, Materials Today Energy, vol. 18, p. 100539, 2020. doi: 10.1016/j.mtener.2020.100539.

Z. Fan et al., ‘Recent Progress of Black Silicon: From Fabrications to Applications’, Nanomaterials, vol. 11, no. 1, Art. no. 1, 2021. doi: 10.3390/nano11010041.

T.-G. Chen et al., ‘Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics: Characteristics of large-scale nanohole arrays’, Prog. Photovolt: Res. Appl., vol. 22, no. 4, pp. 452–461, 2014. doi: 10.1002/pip.2291.

S. Cheon et al., ‘Fabrication of parabolic Si nanostructures by nanosphere lithography and its application for solar cells’, Scientific Reports, vol. 7, no. 1, p. 7336. 2017. doi: 10.1038/s41598-017-07463-7.

S. Alvarez, R. Silva, C. J. Espinola, R. Vaz and A. Diniz, ‘NH4OH-B Silicon texturing of periodic V-groove channels, upright, and inverted pyramids structures’, IEEE Journal of Photovoltaics, vol. 11, no. 3, pp. 570–574, 2021. doi: 10.1109/JPHOTOV.2021.3059421.