Wind Turbine-Fuel Cell Power System for Supplying Isolated Sites

Main Article Content

Abdelghani Meziane
Fares Meziane
Salah Zouaoui


The present work aims to develop a dynamic Wind Turbine-Fuel Cell (WT-FC) hybrid power system under Simulink to meet the energy needs of dwellings in the south of Algeria. The Enercon E40 wind turbine model with a rated power of 500 kW was selected. Simulations were performed for four sites, namely Tinfouye, Belkbir, Tabelbala and Tindouf using daily wind data ranging between 2004 and 2018. The results indicated that Tindouf has a high mean speed of 5.57 m/s at 10 m, resulting in a power density of 194 W/m2. However, a low average speed of 4.81 m/s is recorded at the site of Tabelbala. The maximum energy production is recorded at Belkbir reaching 4183.96 MWh/year with 0.9141 C$/kWh. Therefore, a high-power density of 239 W/m² was noted in Tabelbala. In the environmental analysis, Belkbir was found to have the highest avoided carbon dioxide (CO2) emission rate of 1829.64 tons CO2/kWh.

Article Details

How to Cite
A. . Meziane, F. . Meziane, and S. . Zouaoui, “Wind Turbine-Fuel Cell Power System for Supplying Isolated Sites”, J. Ren. Energies, vol. 1, no. 1, pp. 125 -, Sep. 2023.


BENMEDJAHED, Miloud, MAOUEDJ, Rachid, et MOUHADJER, Samir, Wind energy resource assessment of desert sites in Algeria: energy and reduction of CO2 emissions, International Journal of Applied Power Engineering (IJAPE) 2020; vol. 9, no 1, p. 22.

Benmedjahed, M., Maouedj, R., Mouhadjer, S., Menni, Y., Ameur, H., Dahbi, A., Saba, D., Touahri, T. "Analysis of the wind resources in Saharan Atlas of Algeria: Adrar region as a case study." Iranian (Iranica) Journal of Energy & Environment 2021; 12.2: 155-160.

Fares Meziane, Farouk Chellali, Kamal Mohammedi, Ilyes Nouicer & Nourdine Kabouche. Wind flow simulation and characteristics prediction using WAsP software for energy planning over the region of Hassi R’mel. International Journal of Green Energy 2021; 18 : 6, 634-644.doi : 10.1080/15435075.2021.1875470.

Abderrahim A., Ghellai N., Bouzid Z., Menni Y. Wind energy resource assessment in south western of Algeria. Mathematical Modelling of Engineering Problems, 2019; Vol. 6, No. 2, pp. 157-162.

Oumelkhier BOUCHIBA, Tahar MERIZGUI, Bachir GAOUI, Saliha CHETTIH, Ali CHEKNANE. Techno-economical optimization of wind energy potential and implementation of an electrical energy system equivalent to a 60 MW production plant in the Laghouat region. Romanian Journal of Information Technology and Automatic Control 2022; Vol. 32, No. 4, 45-58.

Said Diaf, Gilles Notton, Djamila Diaf. Technical and economic assessment of wind farm power generation at Adrar in Southern Algeria, Energy Procedia 2013; 42, 53 – 62.

Meziane, F.; Khellaf, A.; Chellali, F. Study and dimensioning of a Wind-Electrolyzer-Fuel cell system for the power supply of an isolated site. Renewable Energy Review SIENR’12 Ghardaïa 2012 ; 381 – 391.

M. Belatel, F. Benchikh, Z. Simohamed, F. Ferhat et F.Z. Aissous. Technologie du couplage d’un système hybride Technologie du couplage d’un système hybride à combustible pour la production de l’électricité verte. Constantine, Revue des Energies Renouvelables Vol. 14 N°1 (2011) 145 – 162, Mars 2011.

Gabour, A. ; Metatla, A. Optimal design and comparison between renewable energy, hybrid energy and non-renewable energy systems : case of Skikda, Algeria. Constantine, Third International Conference on Energy, Materials, Applied Energetics and Pollution, October 30-31, 2016.

N'guessan S. Attemene, Krehi S. Agbli, Siaka Fofana, Daniel Hissel. Optimal sizing of a wind, fuel cell, electrolyzer battery and supercapacitor system for off-grid applications. 25 May 2019.

Dawood, F.; Shafiullah, G.M.; Anda, M. Stand-Alone Microgrid with 100% Renewable Energy: A Case Study with Hybrid Solar PV-Battery-Hydrogen. Sustainability 2020; 12, 2047.

Mohseni, S.; Brent, A.C.; Burmester, D. A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid. Applied Energy 2019; 259, 114224.

Trifkovic, M.; Sheikhzadeh, M.; Nigim, K. Modeling and control of a renewable hybrid energy system with hydrogen storage. IEEE Trans. Control Syst. Technology 2013 ; 22, 169–179.

Albarghot, M.; Sasi, M.; Rolland, L. MATLAB/Simulink modelling and experimental results of a PEM electrolyzer powered by a solar panel. In Proceedings of the IEEE Electrical Power and Energy Conference (EPEC), Ottawa, ON, Canada, 12–14 October 2016; pp. 1–6.

Muhammad Maaruf1, Muhammad Khalid. Hybrid Solar/ PEM Fuel Cell/ and Water Electrolyzer Energy System for All-Electric Ship 2022; IEEE Kansas Power and Energy Conference (KPEC).

Bati Ernest Boya Bi, Prosper Gbaha, Magloire Paul Ekoun Koffi, Kamenan Blaise Koua. Modélisation Des Composants D’un Système Hybride Panneaux Photovoltaïque – Stockage D’énergie Via L’hydrogène – Batteries, European Scientific Journal January 2018 ; edition Vol.14, No.3 ISSN : 1857 – 7881 (Print) e - ISSN 1857- 7431.

Moller, M.C. ; Krauter, S. Hybrid Energy System Model in Matlab/Simulink Based on Solar Energy, Lithium-Ion Battery and Hydrogen. Energy 2022; 15, 2201.

Firtina-Ertis, Irem; Acar, Canan; Erturk, Ercan. Optimal sizing design of an isolated stand-alone hybrid wind-hydrogen system for a zero-energy house. Applied Energy 2020; 274: 115244.

Calado, Gonçalo, and Rui Castro. Hydrogen production from offshore wind parks: Current situation and future perspectives. Applied Sciences 2021;11.12:5561

Cheng, C., & Hughes, L. The role for offshore wind power in renewable hydrogen production. Journal of Cleaner Production 2023; 136223.

Komorowska, A., Benalcazar, P., & Kaminski, J. Evaluating the competitiveness and uncertainty of offshore wind-to-hydrogen production: A case study of Poland. International Journal of Hydrogen Energy 2023.

Ghafarian, P., & Mohammadpour Penchah, M. Wind resource assessment over the Persian Gulf and Oman Sea using a numerical model simulation and satellite data. Journal of Ocean Engineering and Marine Energy 2023 ; 1-10.

Carta, J.A.; Ramirez, P.; Velazquez, S. A review of wind speed probability distributions used in wind energy analysis. Cases studies in the Canary Islands. Renewable and Sustainable Energy Reviews, Volume 13, Issue 5, June 2009; Pages 933-955.

Hulio, Z.H.; Jiang, W.; Rehman, S. Technical and economic assessment of wind power potential of Nooriabad, Pakistan. Energy, Sustainability and Society 2017; vol. 7, no. 1, p. 35.

Patel, M.R. Wind and solar power systems. Florida, America : CRC Press 1999.

Keyhani, A.; Ghasemi-Varnamkhasti, M.; Khanali, M.; Abbaszadeh, R. An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran. Energy 2010;35(1):188-201.

Islam, M.R.; Saidur, R.; Rahim, N.A. Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function. Energy 2011; 36;985-992.

Khan, M.J.; Iqbal, M.T. Dynamic Modeling and Simulation of a Small Wind-Fuel Cell Hybrid Energy System, Renewable Energy 2005; Vol. 30, N°3, pp. 421 – 439.

Uzunoglu, M.; Alam, M.S. Dynamic Modeling, Design, and Simulation of a Combined PEM Fuel Cell and Ultracapacitor System for Stand-Alone Residential Applications. IEEE Transactions on Energy Conversion 2006; 21(3), 767–775.

Ardente, F.; Beccali, M. ; Cellura, M. ; Lo Brano, V. Energy performances and life cycle assessment of an Italian wind farm. Renewable and Sustainable Energy Reviews 2008; 12: 200–217.

Haddouche, S.K.; Boudia, S.M. Wind Resource Assessment at Illizi Site in the Algerian Sahara with Environmental Analysis. 7th International Renewable and Sustainable Energy Conference (IRSEC) 2019; Agadir, Morocco 1-6.