Biodiesel production feedstocks: current state in Algeria

Main Article Content

Rahma Bessah
Fetta Danane
Rhiad Alloune
Sabah Abada

Abstract

Research and development of affordable, sustainable, and low-carbon energy sources capable of reducing dependence on fossil fuels, contributing to social and economic development, and improving environmental and health skills have become a global priority. In recent decades, biodiesel produced from oilseeds has received significant attention as an alternative biofuel. However, the use of first-generation oilseed crops has sparked controversy, and the use of local non-edible feedstocks is considered a promising alternative. The motivation behind this review is to provide an alternative and enlightening perspective on the use of non-edible vegetable oils for biodiesel production, with a particular focus on the current state of biodiesel production in Algeria. The objective is to assess the conditions under which this production could be sustainable and environmentally friendly while maintaining a balance between energy needs, economic stability, and environmental impact.

Article Details

How to Cite
[1]
R. . Bessah, F. . Danane, R. . Alloune, and S. . Abada, “Biodiesel production feedstocks: current state in Algeria”, J. Ren. Energies, vol. 26, no. 2, pp. 161 -, Dec. 2023.
Section
Articles

References

Abada Z, Bouharkat M. Study of management strategy of energy resources in Algeria. Energy Rep 2018 ; 4:1–7. https://doi.org/10.1016/j.egyr.2017.09.004

Abobatta WF. Jatropha curcas, a Novel Crop for Developing the Marginal Lands. In: Basu C, editor. Biofuels Biodiesel, New York, NY: Springer US; 2021, p. 79–100. https://doi.org/10.1007/978-1-0716-1323-8_6.

Achten WMJ, Verchot L, Franken YJ, Mathijs E, Singh VP, Aerts R, et al. Jatropha bio-diesel production and use. Biomass Bioenergy 2008; 32:1063–84. https://doi.org/10.1016/j.biombioe.2008.03.003.

Adeleke BS, Babalola OO. Oilseed crop sunflower (Helianthus annuus) as a source of food: Nutritional and health benefits. Food Sci Nutr 2020; 8:4666–84. https://doi.org/10.1002/fsn3.1783

Agarwal A, Prakash O, Bala M. Camelina sativa, a short gestation oilseed crop with biofuel potential: Opportunities for Indian scenario. Oil Crop Sci 2021; 6:114–21. https://doi.org/10.1016/j.ocsci.2021.07.001

Ahmia AC, Danane F, Bessah R, Boumesbah I. Raw material for biodiesel production. Valorization of used edible oil. J Renew Energ 2014 ; 17:335–43.

Alloune R, Balistrou M, Awad S, Loubar K, Tazerout M. Performance, combustion and exhaust emissions characteristics investigation using Citrullus colocynthis L. biodiesel in DI diesel engine. J Energy Inst 2018; 91:434–44. https://doi.org/10.1016/j.joei.2017.01.009

Alloune R, Liazid A, Tazerout M. Etudes comparatives de deux plantes oléagineuses locales pour la production du biodiesel en Algérie. Rev Energ Renouvelables SIENR 2012; 12:19–22.

Amouri M, Zaïd TA, Aziza M, Zandouche O. Life cycle assessment of Moringa oleifera derived biodiesel: Energy efficiency, CO2 intensity and environmental impacts. Environ Prog Sustain Energy 2023:e14079. https://doi.org/10.1002/ep.14079

Anwar M. Biodiesel feedstocks selection strategies based on economic, technical, and sustainable aspects. Fuel 2021; 283:119204. https://doi.org/10.1016/j.fuel.2020.119204.

Arunkumar M, Kannan M, Murali G. Experimental studies on engine performance and emission characteristics using castor biodiesel as fuel in CI engine. Renew Energy 2019; 131:737–44. https://doi.org/10.1016/j.renene.2018.07.096.

Atabani AE, Mahlia TMI, Anjum Badruddin I, Masjuki HH, Chong WT, Lee KT. Investigation of physical and chemical properties of potential edible and non-edible feedstocks for biodiesel production, a comparative analysis. Renew Sustain Energy Rev 2013; 21:749–55. https://doi.org/10.1016/j.rser.2013.01.027.

Athar M, Zaidi S. A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production. J Environ Chem Eng 2020; 8:104523. https://doi.org/10.1016/j.jece.2020.104523

Ayompe LM, Schaafsma M, Egoh BN. Towards sustainable palm oil production: The positive and negative impacts on ecosystem services and human wellbeing. J Clean Prod 2021; 278:123914. https://doi.org/10.1016/j.jclepro.2020.123914.

Blume RY, Lantukh GV, Levchuk IV, Lukashevych KM, Rakhmetov DB, Blume YB. Evaluation of Potential Biodiesel Feedstocks: Camelina, Turnip Rape, Oil Radish and Tyfon. Open Agric J 2020; 14. https://doi.org/10.2174/1874331502014010299.

Bou Dib J, Krishna VV, Alamsyah Z, Qaim M. Land-use change and livelihoods of non-farm households: The role of income from employment in oil palm and rubber in rural Indonesia. Land Use Policy 2018; 76:828–38. https://doi.org/10.1016/j.landusepol.2018.03.020.

Boukandoul S, Casal S, Cruz R, Pinho C, Zaidi F. Algerian Moringa oleifera whole seeds and kernels oils: Characterization, oxidative stability, and antioxidant capacity. Eur J Lipid Sci Technol 2017; 119:1600410. https://doi.org/10.1002/ejlt.201600410

Boulal A, Atabani AE, Mohammed MN, Khelafi M, Uguz G, Shobana S, et al. Integrated valorization of Moringa oleifera and waste Phoenix dactylifera L. dates as potential feedstocks for biofuels production from Algerian Sahara: An experimental perspective. Biocatal Agric Biotechnol 2019; 20:101234. https://doi.org/10.1016/j.bcab.2019.101234

Carrino L, Visconti D, Fiorentino N, Fagnano M. Biofuel production with castor bean: a win–win strategy for marginal land. Agronomy 2020; 10:1690. https://doi.org/10.3390/agronomy10111690

Cavelius P, Engelhart-Straub S, Mehlmer N, Lercher J, Awad D, Bruck T. The potential of biofuels from first to fourth generation. PLOS Biol 2023 ; 21:e3002063. https://doi.org/10.1371/journal.pbio.3002063.

Chader S, Mahmah B, Chetehouna K, Mignolet E. Biodiesel production using Chlorella sorokiniana a green microalga. J Renew Energ 2011; 14:21–6.

Chavan SB, Kumbhar RR, Sharma YC. Transesterification of Citrullus colocynthis (Thumba) oil: Optimization for biodiesel production. Adv Appl Sci Res 2014; 5:10–20.

Chen H, Ding M, Li Y, Xu H, Li Y, Wei Z. Feedstocks, environmental effects and development suggestions for biodiesel in China. J Traffic Transp Eng Engl Ed 2020; 7:791–807. https://doi.org/10.1016/j.jtte.2020.10.001.

Chouaibi M, Rigane K, Ferrari G. Extraction of Citrullus colocynthis L. seed oil by supercritical carbon dioxide process using response surface methodology (RSM) and artificial neural network (ANN) approaches. Ind Crops Prod 2020; 158:113002. https://doi.org/10.1016/j.indcrop.2020.113002

Chrisendo D, Siregar H, Qaim M. Oil palm cultivation improves living standards and human capital formation in smallholder farm households. World Dev 2022; 159:106034. https://doi.org/10.1016/j.worlddev.2022.106034.

Cui J, Martin JI. Impacts of US biodiesel mandates on world vegetable oil markets. Energy Econ 2017; 65:148–60. https://doi.org/10.1016/j.eneco.2017.04.010

Danane F, Bessah R, Alloune R, Tebouche L, Madjene F, Kheirani AY, et al. Experimental optimization of Waste Cooking Oil ethanolysis for biodiesel production using Response Surface Methodology (RSM). Sci Technol Energy Transit 2022; 77:14. https://doi.org/10.2516/stet/2022014

Dane F, Liu J, Zhang C. Phylogeography of the bitter apple, Citrullus colocynthis. Genet Resour Crop Evol 2007; 54:327–36. https://doi.org/10.1007/s10722-005-4897-2

Debaeke P, Bedoussac L, Bonnet C, Mestries E, Seassau C, Gavaland A, et al. Sunflower crop: environmental-friendly and agroecological. OCL Oilseeds Fats Crops Lipids 2017; 23:12-p. https://doi.org/10.1051/ocl/2017020

Dey S, Reang NM, Das PK, Deb M. A comprehensive study on prospects of economy, environment, and efficiency of palm oil biodiesel as a renewable fuel. J Clean Prod 2021; 286:124981. https://doi.org/10.1016/j.jclepro.2020.124981

Di Fulvio F, Forsell N, Korosuo A, Obersteiner M, Hellweg S. Spatially explicit LCA analysis of biodiversity losses due to different bioenergy policies in the European Union. Sci Total Environ 2019; 651:1505–16. https://doi.org/10.1016/j.scitotenv.2018.08.419

Dornburg V, Faaij APC, Verweij PA, Banse M, Diepen K van, Keulen H van, et al. Biomass assessment: assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy: inventory and analysis of existing studies: supporting document. MNP, 2008, No. 500102 014.

Dumeignil F. Propriétés et utilisation de l’huile de ricin. Ol Corps Gras Lipides 2012; 19:10–5. https://doi.org/10.1051/ocl.2012.0427.

Durango-Giraldo G, Zapata-Hernandez C, Santa JF, Buitrago-Sierra R. Palm oil as a biolubricant: Literature review of processing parameters and tribological performance. J Ind Eng Chem 2022; 107:31–44. https://doi.org/10.1016/j.jiec.2021.12.018.

Ebrahimian E, Denayer JF, Aghbashlo M, Tabatabaei M, Karimi K. Biomethane and biodiesel production from sunflower crop: A biorefinery perspective. Renew Energy 2022. https://doi.org/10.1016/j.renene.2022.10.069

Ewunie GA, Morken J, Lekang OI, Yigezu ZD. Factors affecting the potential of Jatropha curcas for sustainable biodiesel production: A critical review. Renew Sustain Energy Rev 2021; 137:110500. https://doi.org/10.1016/j.rser.2020.110500.

FAOSTAT. Food and Agriculture Organization of the United Nations. Statistics Division. FAOSTAT, Statistical database. 2019. https://www.fao.org/faostat/en/#home

Gale F, Valdes C, Ash M. Interdependence of China, United States, and Brazil in soybean trade. N Y US Dep Agric Econ Res Serv ERS Rep 2019:1–48.

Garcia R, Figueiredo F, Brandao M, Hegg M, Castanheira E, Malça J, et al. A meta-analysis of the life cycle greenhouse gas balances of microalgae biodiesel. Int J Life Cycle Assess 2020; 25:1737–48. https://doi.org/10.1007/s11367-020-01780-2

INDC-Algeria (Intended Nationally Determined Contribution INDC-Algeria), 2015

Ismail S, Rao NK, Dagar JC. Identification, evaluation, and domestication of alternative crops for saline environments. In: Dagar, J., Yadav, R., Sharma, P. (eds) Research Developments in Saline Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-13-5832-6_17

Jeswani HK, Chilvers A, Azapagic A. Environmental sustainability of biofuels: a review. Proc R Soc Math Phys Eng Sci 2020; 476:20200351. https://doi.org/10.1098/rspa.2020.0351.

Jeyaseelan T, El Samad T, Rajkumar S, Chatterjee A, Al-Zaili J. A techno-economic assessment of waste oil biodiesel blends for automotive applications in urban areas: Case of India. Energy 2023; 271:127021. https://doi.org/10.1016/j.energy.2023.127021.

Kargbo DM. Biodiesel production from municipal sewage sludges. Energy Fuels 2010 ; 24:2791–4. https://doi.org/10.1021/ef1001106

Kgathi DL, Mmopelwa G, Chanda R, Kashe K, Murray-Hudson M. A review of the sustainability of Jatropha cultivation projects for biodiesel production in southern Africa: Implications for energy policy in Botswana. Agric Ecosyst Environ 2017; 246:314–24. https://doi.org/10.1016/j.agee.2017.06.014.

Khan M, Khan M, Al-Hamoud K, Adil SF, Shaik MR, Alkhathlan HZ. Diversity of Citrullus colocynthis (L.) Schrad Seeds Extracts: Detailed Chemical Profiling and Evaluation of Their Medicinal Properties. Plants 2023; 12:567. https://doi.org/10.3390/plants12030567

Lama AD, Klemola T, Saloniemi I, Niemela P, Vuorisalo T. Factors affecting genetic and seed yield variability of Jatropha curcas (L.) across the globe: A review. Energy Sustain Dev 2018; 42:170–82. https://doi.org/10.1016/j.esd.2017.09.002.

Lee SY, Sankaran R, Chew KW, Tan CH, Krishnamoorthy R, Chu D-T, et al. Waste to bioenergy: a review on the recent conversion technologies. Bmc Energy 2019; 1:1–22. https://doi.org/10.1186/s42500-019-0004-7

Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. Moringa oleifera seeds and oil: Characteristics and uses for human health. Int J Mol Sci 2016; 17:2141. https://doi.org/10.3390/ijms17122141

Liu G, Mai J. Habitat shifts of Jatropha curcas L. in the Asia-Pacific region under climate change scenarios. Energy 2022; 251:123885. https://doi.org/10.1016/j.energy.2022.123885.

Mahlia TMI, Syazmi ZAHS, Mofijur M, Abas AEP, Bilad MR, Ong HC, et al. Patent landscape review on biodiesel production: Technology updates. Renew Sustain Energy Rev 2020; 118:109526. https://doi.org/10.1016/j.rser.2019.109526.

Manigandan S, Atabani AE, Ponnusamy VK, Gunasekar P. Impact of additives in Jet-A fuel blends on combustion, emission and exergetic analysis using a micro-gas turbine engine. Fuel 2020; 276:118104. https://doi.org/10.1016/j.fuel.2020.118104.

MEER, Ministère de l’Environnement (2019) les-Collecteurs-Agréés. http://www.meer.gov.dz/.

Meijaard E, Brooks TM, Carlson KM, Slade EM, Garcia-Ulloa J, Gaveau DLA, et al. The environmental impacts of palm oil in context. Nat Plants 2020; 6:1418–26. https://doi.org/10.1038/s41477-020-00813-w.

MEM, Ministère de l’Energie et des Mines, “Energies Nouvelles, Renouvelables et Maitrise de l’Energie,” available at https : //www.energy.gov.dz/?rubrique=energies-nouvelles-renouvelables-et-maitrise-de-lrenergie, 2011.

Mohiddin MNB, Tan YH, Seow YX, Kansedo J, Mubarak NM, Abdullah MO, et al. Evaluation on feedstock, technologies, catalyst and reactor for sustainable biodiesel production: A review. J Ind Eng Chem 2021; 98:60–81. https://doi.org/10.1016/j.jiec.2021.03.036.

Mubofu EB. Castor oil as a potential renewable resource for the production of functional materials. Sustain Chem Process 2016; 4:11. https://doi.org/10.1186/s40508-016-0055-8.

Mupondwa E, Li X, Falk K, Gugel R, Tabil L. Technoeconomic analysis of small-scale farmer-owned Camelina oil extraction as feedstock for biodiesel production: A case study in the Canadian prairies. Ind Crops Prod 2016; 90:76–86. https://doi.org/10.1016/j.indcrop.2016.05.042.

Muscat A, De Olde EM, de Boer IJ, Ripoll-Bosch R. The battle for biomass: a systematic review of food-feed-fuel competition. Glob Food Secur 2020; 25:100330. https://doi.org/10.1016/j.gfs.2019.100330

Nehdi IA, Sbihi H, Tan CP, Al-Resayes SI. Evaluation and characterisation of Citrullus colocynthis (L.) Schrad seed oil: Comparison with Helianthus annuus (sunflower) seed oil. Food Chem 2013; 136:348–53. https://doi.org/10.1016/j.foodchem.2012.09.009

Neupane D. Biofuels from Renewable Sources, a Potential Option for Biodiesel Production. Bioengineering 2023; 10:29. https://doi.org/10.3390/bioengineering10010029.

Noleppa S, Cartsburg M, Petersen I, Köberich T. Auf der Ölspur Berechnungen zu einer palmölfreieren Welt. Stand Juli 2016. Berlin: WWF Deutschland; 2016.

Oni BA, Oluwatosin D. Emission characteristics and performance of neem seed (Azadirachta indica) and Camelina (Camelina sativa) based biodiesel in diesel engine. Renew Energy 2020; 149:725–34. https://doi.org/10.1016/j.renene.2019.12.012.

Openshaw K. A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenergy 2000; 19:1–15. https://doi.org/10.1016/S0961-9534(00)00019-2.

Osorio-Gonzalez CS, Gomez-Falcon N, Sandoval-Salas F, Saini R, Brar SK, Ramírez AA. Production of biodiesel from castor oil: A review. Energies 2020; 13:2467. https://doi.org/10.3390/en13102467

Ozili PK, Ozen E. Global energy crisis: impact on the global economy. The Impact of Climate Change and Sustainability Standards on the Insurance Market, 2023:439–454. https://doi.org/10.1002/9781394167944.ch29

Papazoglou EG, Kosmadakis G, Serelis KG, Babahmad RA, Ouhammou A, Outzourhit A, et al. Jatropha curcas cultivation in North African countries: the case study of the JATROMED project

Pari L, Suardi A, Stefanoni W, Latterini F, Palmieri N. Environmental and economic assessment of castor oil supply chain: a case study. Sustainability 2020; 12:6339. https://doi.org/10.3390/su12166339

Pikula K, Zakharenko A, Stratidakis A, Razgonova M, Nosyrev A, Mezhuev Y, et al. The advances and limitations in biodiesel production: feedstocks, oil extraction methods, production, and environmental life cycle assessment. Green Chem Lett Rev 2020; 13:275–94. https://doi.org/10.1080/17518253.2020.1829099.

Pinzi S, Garcia IL, Lopez-Gimenez FJ, Luque de Castro MD, Dorado G, Dorado MP. The Ideal Vegetable Oil-based Biodiesel Composition: A Review of Social, Economical and Technical Implications. Energy Fuels 2009; 23:2325–41. https://doi.org/10.1021/ef801098a.

Ramalingam S, Mahalakshmi NV. Influence of high-pressure fuel injection system on engine performance and combustion characteristics of Moringa Oleifera biodiesel and its blends. Fuel 2020; 279:118461. https://doi.org/10.1016/j.fuel.2020.118461.

Rashid U, Anwar F, Moser BR, Knothe G. Moringa oleifera oil: A possible source of biodiesel. Bioresour Technol 2008; 99:8175–9. https://doi.org/10.1016/j.biortech.2008.03.066

Rastoin J-L, Benabderrazik H. Céréales et oléoprotéagineux au Maghreb: Pour un co-développement de filières territorialisées 2014.

Ritchie H, Roser M. Crop Yields. Our World Data 2021.

Rulli MC, Casirati S, Dell’Angelo J, Davis KF, Passera C, D’Odorico P. Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest. Renew Sustain Energy Rev 2019; 105:499–512. https://doi.org/10.1016/j.rser.2018.12.050.

Russo M, Yan F, Stier A, Klasen L, Honermeier B. Erucic acid concentration of rapeseed (Brassica napus L.) oils on the German food retail market. Food Sci Nutr 2021; 9:3664–72. https://doi.org/10.1002/fsn3.2327.

Serradj W. Reality and prospects of fuel demand growth in Algeria-a forward-looking analytical study for the period 2012-2030. 2023;8:024–43. Journal of Finance, Investment and Sustainable Development

Singh D, Sharma D, Soni SL, Inda CS, Sharma S, Sharma PK, et al. A comprehensive review of physicochemical properties, production process, performance and emissions characteristics of 2nd generation biodiesel feedstock: Jatropha curcas. Fuel 2021; 285:119110. https://doi.org/10.1016/j.fuel.2020.119110.

Stambouli AB, Khiat Z, Flazi S, Kitamura Y. A review on the renewable energy development in Algeria: Current perspective, energy scenario and sustainability issues. Renew Sustain Energy Rev 2012; 16:4445–60. https://doi.org/10.1016/j.rser.2012.04.031

Sydor M, Kurasiak-Popowska D, Stuper-Szablewska K, Rogozinski T. Camelina sativa. Status quo and future perspectives. Ind Crops Prod 2022; 187:115531. https://doi.org/10.1016/j.indcrop.2022.115531.

Tokel D, Erkencioglu BN. Production and Trade of Oil Crops, and Their Contribution to the World Economy. In: Tombuloglu H, Unver T, Tombuloglu G, Hakeem KR, editors. Oil Crop Genomics, Cham: Springer International Publishing; 2021, p. 415–27. https://doi.org/10.1007/978-3-030-70420-9_20.

Topare NS, Jogdand RI, Shinde HP, More RS, Khan A, Asiri AM. A short review on approach for biodiesel production: Feedstock’s, properties, process parameters and environmental sustainability. Mater Today Proc 2021. https://doi.org/10.1016/j.matpr.2021.12.216.

USDA. Crop explorer, Food and Agriculture Organization of the United Nations. 2021. https://ipad.fas.usda.gov/cropexplorer/Default.aspx

USDA. Oilseeds: World Markets and Trade. USDA Foreign Agric Serv. 2020. https://www.fas.usda.gov/data/oilseeds-world-markets-and-trade

Van Vuuren DP, Zimm C, Busch S, Kriegler E, Leininger J, Messner D, et al. Defining a sustainable development target space for 2030 and 2050. One Earth 2022. https://doi.org/10.1016/j.oneear.2022.01.003.

Vickram S, Manikandan S, Deena SR, Mundike J, Subbaiya R, Karmegam N, et al. Advanced biofuel production, policy and technological implementation of nano-additives for sustainable environmental management–A critical review. Bioresour Technol 2023:129660. https://doi.org/10.1016/j.bcab.2019.101234

Wongsirichot P, Gonzalez-Miquel M, Winterburn J. Recent advances in rapeseed meal as alternative feedstock for industrial biotechnology. Biochem Eng J 2022; 180:108373. https://doi.org/10.1016/j.bej.2022.108373.

Yahya M, Dutta A, Bouri E, Wadstrom C, Uddin GS. Dependence structure between the international crude oil market and the European markets of biodiesel and rapeseed oil. Renew Energy 2022; 197:594–605. https://doi.org/10.1016/j.renene.2022.07.112.

Yusuff AS, Gbadamosi AO, Popoola LT. Biodiesel production from transesterified waste cooking oil by zinc-modified anthill catalyst: Parametric optimization and biodiesel properties improvement. J Environ Chem Eng 2021; 9:104955. https://doi.org/10.1016/j.jece.2020.104955.

Zakaria NZJ, Rozali S, Mubarak NM, Ibrahim S. A review of the recent trend in the synthesis of carbon nanomaterials derived from oil palm by-product materials. Biomass Convers Biorefinery 2022. https://doi.org/10.1007/s13399-022-02430-3.

Zhao J, Dong K, Dong X, Shahbaz M. How renewable energy alleviate energy poverty? A global analysis. Renew Energy 2022; 186:299–311. https://doi.org/10.1016/j.renene.2022.01.005

Zhou X-Y, Lu G, Xu Z, Yan X, Khu S-T, Yang J, et al. Influence of Russia-Ukraine war on the global energy and food security. Resour Conserv Recycl, 2023;188:106657. https://doi.org/10.1016/j.resconrec.2022.106657