Enhancing Wind Turbine Efficiency: A Comparative Study of Two Innovative MPPT Control Algorithms

Main Article Content

Zina Larabi
Kaci Ghedamsi
Djamal Aouzelag
Fares Nafa


This paper presents two novel maximum power point tracking (MPPT) control strategies utilizing the gradient optimization algorithm to maximize the wind turbine's output power while minimizing the chattering effect resulting from intermittent control switching. In the first method, the gradient algorithm is integrated with sliding mode control (GSMC), and in the second technique, it is combined with adaptive fuzzy sliding mode control (GAFSMC). To assess the robustness and tracking capabilities of these techniques, numerical simulations were conducted under varying wind speed profiles. The results obtained demonstrate superior performance of the two newly developed methods when compared to classical SMC and fuzzy logic approaches.


Article Details

How to Cite
Z. Larabi, K. . Ghedamsi, D. . Aouzelag, and F. . Nafa, “Enhancing Wind Turbine Efficiency: A Comparative Study of Two Innovative MPPT Control Algorithms”, J. Ren. Energies, vol. 1, no. 1, pp. 13 -, May 2024.


Agarwal N K, Sadhu P K, Chakraborty S. (2022). MPPT based PMSG wind turbine system using sliding model control (smc) and artificial Neural Network (ANN) Based Regression Analysis. IETE Journal of research, 68(3), pp. 1652-1660, https://doi.org/10.1080/03772063.2019.1662336

Atallah M, Mezouar A, Belgacem K, Saidi Y, Benmahdjoub M A. (2022). Modeling and control strategy for a wind turbine by an AG-SMC without wind speed sensor. Journal of Renewable Energies, 1(1), pp. 9-19. https://doi.org/10.54966/jreen.vlil.1034

Bekka H, Taraft S, Rekioua D, Bacha S. (2013). Power control of a wind generator connected to the grid in front of srrong winds. Journal of Electrical Systems, 09(03), pp. 267-278.

Bellounis O, Labar H. (2017). Fuzzy sliding control of DFIG for wind energy conversion. International Journal of Intelligent enginneering and systems, 10(2). https://doi.org/10.22266/ijies2017.0430.18

Benkahla M, Taleb R, Boudjema Z. (2018). A new robust control using adaptive fuzzy sliding mode control for a DFIG supplied by a 19-level inverter with less number of switches. Electrical Engineering & electromechanics, 2018 (4), pp. 11–19. https://doi.org/10.20998/2074-272x.2018.4.02

Cherifi D, Miloud Y. (2020). Hybrid control using adaptive fuzzy sliding mode control of doubly fed induction generator for wind energy conversion system. Periodica Polytechnica Electrical Engineering and Computer Science, 64(4), pp. 374–381. https://doi.org/10.3311/ppee.15508

Gaied H, Naoui M, Kraiem H, Goud B S, Flah A, Alghaythi M L, Kotb H, Ali S G, Aboras K. (2022). Comparative analysis of MPPT techniques for enhancing a wind energy conversion system. Front. Energy Res. 2022, 10:975134. https://doi.org/10.3389/fenrg.2022.975134

George T, Jayapraksh P, Francis T, Ezhil C. (2022). Wind energy conversion system-based PMSG for maximum power tracking and grid synchronization using adaptive fuzzy logic control, Journal of Applied Research and Technology, 20(6), pp.703-717. https://doi.org/10.22201/icat.24486736e.2022.20.6.12566

Hannachi M, Elbeji O, Benhamed M, Sbita L. (2021) Comparative study of four MPPT for a wind power system. Wind engineering, 45(6), pp. 1613-1622. https://doi.org/10.1177/0309524X21995946

Kadri A, Marzougui H, Bacha F. (2016). MPPT control methods in wind energy conversion system using DFIG. 4th International Conference on Control Engineering & Information Technology (CEIT), Hammamet, Tunisia, 2016, pp. 1-6. https://doi.org/10.1109/CEIT.2016.7929115

Kahla S, Soufi Y, Sedraoui M, Bechouat M. (2017). Maximum power point tracking of wind energy conversion system using multi-objective grey wolf optimization of fuzzy-sliding mode controller. International Journal of Renewable Energy Research-IJRER, 7(2), pp. 926-936. https://doi.org/10.20508/ijrer.v7i2.6125.q7073

Laverdure N. (2005). On the integration of wind turbine generators into weak or insular grids. (Sur l’intégration des générateurs éoliens dans les réseaux faibles ou insulaires), Phd Thesis, Polytecnic National Institute of Grenoble, France, 2005. (in French). Available at : https://theses.hal.science/tel-00170128 [Accessed: 02 September 2023]

Malobe P A, Djondiné P, Eloundou P N, Ndongo H A. (2020). A Novel hybrid mppt for wind energy conversion systems operating under low variations in wind speed. Energy and Power Engineering, 12(12), pp.716-728. https://doi.org/10.4236/eps.2020.1212042

Minh H Q, Frédéric N, , Najib E, Abdelaziz H. (2012) Fuzzy control of variable speed wind turbine using permanent magnet synchronous machine for stand-alone system. In: N.,M’sirdi, A., Namaane, R., J., Howlett, L., C., Jain, Eds. Sustainability in energy and buildings. smart innovation, systems and technologies, vol 12. springer, berlin, heidelberg. https://doi.org/10.1007/978-3-642-27509-8_3

Mousavi Y, Bevan G, Kucukdemiral I B, Fekih A. (2022). Sliding mode control of wind energy conversion systems: Trends and applications. Renewable and Sustainable Energy Reviews, vol. 167, 112734. https://doi.org/10.1016/j.rser.2022.112734

Ndirangu J G, Nderuj N, Maina C M, Muhia A M. (2016). Power output maximization of a pmsg based standalone wind energy conversion system using fuzzy logic. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), vol. 11, issue 1, pp 58-66. http://www.iosrjournals.org/iosr-jeee/Papers/V0l11%20Issue%201/Version-2/I011125866.pdf

Tahiri F, Chikh K, khafallah M. (2018). MPPT strategy using fuzzy-pi controller applied to a standalone wind energy conversion system. Paper presented at the SCA 2018: proceedings of the 3rd international conference on smart city applications, Tetouan. https://doi.org/10.1145/3286606.3286847

Teninge A, Jecu C, Roye D, Bacha S, Duval J, Belhomme R. (2008). Contribution to frequency control through wind turbine inertial energy storage. IET renewable power generation, 11(1), pp. 358-370. http://doi.org/10.1049/iet-rpg.2008.0078

Tiwari R, Babu N R. (2016). Fuzzy logic based MPPT for permanent magnet synchronous generator in wind energy conversion system. IFAC-Papers Online, vol.49, pp.462-467. https://doi.org/10.1016/j.ifacol.2016.03.097

Toriki M B, Asy’ari M K, Musyafa A. (2021). Enhanced performance of PMSG in WECS using MPPT – Fuzzy sliding mode control. Journal Europeen des Systemes Automatisés, 54(1), 85-96. https://doi.org/10.18280/jesa.540110

Yaakoubi A E, Amhaimar L, Attari K, Harrak M H, Halaoui M E, Asselman A. (2019). Non-linear and intelligent maximum power point tracking strategies for small size wind turbines: Performance analysis and comparison. Energy Reports, vol. 5, pp. 545-554. https://doi.org/10.1016/j.egyr.2019.03.001

Zebraoui O, Bouzi M. (2020). Improved MPPT controls for a standalone PV/wind/battery hybrid energy system. International Journal of Power Electronics and Drive Systems, vol. 11, pp. 988-1001. http://doi.org/10.11591/ijpeds.v11.i2.pp988-1001

Zhang X, Jia J, Zheng L, Yi W, Zhang Z. (2022). Maximum power point tracking algorithms for wind power generation system: Review, comparison and analysis. Energy Science & Engineering, 11(1), pp. 430-444. https://doi.org/10.1002/ese3.1313

Zhu Y, Cheng M, Hua W, Wang W. (2012). A novel maximum power point tracking control for permanent magnet direct drive wind energy conversion systems. Energies 2012, vol. 5, pp. 1398-1412. https://doi.org/10.3390/en5051398

Most read articles by the same author(s)