Energy management for renewable electricity production system including hybrid hydrogen sub-system

Main Article Content

Nourredine Zidane
Sofia Lalouni Belaid

Abstract

An optimal energy management technique for hybrid power generation with a hydrogen storage system is presented in this study; based on a fuzzy controller (FC) and local controls for each converter. The system includes mainly a photovoltaic generator (PVG), a fuel cell, a hydrogen storage tank, an electrolyzer, batteries, and electrical converters. Energy management aims to manage the excess energy produced by the PVG to meet load demand taking into consideration the system's cost and lifespan. The MATLAB-Simulink environment is used to simulate the proposed energy management technique; the obtained results show considerable limitation in current/voltage constraints, which prolongs the hydrogen subsystem's lifespan and reduces the system's cost.

Article Details

How to Cite
[1]
N. . Zidane and S. . Lalouni Belaid, “Energy management for renewable electricity production system including hybrid hydrogen sub-system”, J. Ren. Energies, vol. 1, no. 1, pp. 107 -, May 2024.
Section
special

References

Ahmed. A.A, R. Hegazy, A. Mohammad Ali (2021) Enhancing the operation of fuel cell-photovoltaic-battery-supercapacitor renewable system through a hybrid energy management strategy, International Journal of Hydrogen Energy, 46(8):6061–75. DOI: 10.1016/j.ijhydene.2020.06.052

Bhat Nempu. P., N. Sabhahit Jayalakshmi (2008) A new power management strategy for PV-FC-based autonomous DC microgrid, Archives of Electrical Engineering, 67(4):815–828. DOI: 10.24425/aee.2018.124742

Dash V, Bajpai P. (2015) Power management control strategy for a stand-alone solar photovoltaic-fuel cell–battery hybrid system,” Sustainable Energy Technologies and Assessments;9:68–80. DOI:10.1016/J.SETA.2014.10.001

Gerlach. L., T. Bocklisch, (2021) Experts versus Algorithms? Optimized Fuzzy Logic Energy Management of Autonomous PV Hybrid Systems with Battery and H2 Storage,” Energies. 14(6): 1777, 2021. DOI:10.3390/en14061777

Higuita C. M, Agbossou K, Kelouwani S, Dubé Y. (2017) Experimental evaluation of a power management system for a hybrid renewable energy system with hydrogen production, Renewable Energy;113:1086–1098. DOI: 10.1016/j.renene.2017.06.066

Ivalin, P., Paolo, G. (2020) Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems. Applied Energy; 274: 115197. DOI:10.1016/j.apenergy.2020.115197

Kadri. A., H. Marzougui, A. Aouiti, F. Bacha (2020) Energy management and control strategy for a DFIG wind turbine/fuel cell hybrid system with super capacitor storage system. Energy, 192: 116518–57. DOI: 10.1016/j.energy.2019.116518

Khan. M.J, M.T. Iqbal (2005) Dynamic modeling and simulation of a small wind–fuel cell hybrid energy system, Renewable Energy, 30: 421–439. DOI: 10.1016/j.renene.2004.05.013

Lalouni Belaid.S (2021) Improved IM DTC by using a Fuzzy Switching Table in PV Applications; Elektrotehniški vestnik, 88, 1-2: 26–32.

Liu. J, S. Cao, X. Chen, H. Yang, J. Peng (2021) Energy planning of renewable applications in high-rise residential buildings integrating battery and hydrogen vehicle storage, Applied Energy, 281:116038–54. DOI: 10.1016/j.apenergy.2020.116038

Lux B, Pfluger B. (2020) A supply curve of electricity-based hydrogen in a decarbonized European energy system in 2050, Applied Energy; 269, 115011. DOI:10.1016/j.apenergy.2020.115011

Magrini. A, S. Lazzari, L. Marenco, G. Guazzi, (2017) A procedure to evaluate the most suitable integrated solutions for increasing energy performance of the building’s envelope, avoiding moisture problems. International Journal of Heat and Technology; 35(4): 689-699. DOI:10.18280/ijht.350401

Sadigh Behzadi M, Niasati M. (2015) Comparative performance analysis of a hybrid PV/FC/battery stand-alone system using different power management strategies and sizing approaches,” Int J Hydrogen Energy; 40 (1): 538–548. DOI:10.1016/j.ijhydene.2014.10.097

Tabanjat A, Becherif M, Hissel D, Ramadan H. S. (2018) Energy management hypothesis for the hybrid power system of H2/WT/PV/GMT via AI techniques. Int J Hydrogen Energy;43 (6):3527–3541. DOI: 10.1016/j.ijhydene.2017.06.085

Uzunoglu.M, O.C. Onar, M.S. Alam (2009) Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for a stand-alone application, Renewable Energy, 34:509–520. DOI: 10.1016/j.renene.2008.06.009

Wang. T, Q. Li, X. Wang, Y. Qiu, M. Liu, X. Meng, L. Jincheng, W. Chen (2020) An optimized energy management strategy for fuel cell hybrid power system based on maximum efficiency range identification, Journal of Power Sources, 445: 227333–44. DOI: 10.1016/j.jpowsour.2019.227333

Xueqin. L, W. Yinbo, L. Jie, Z. Yangyang, C. Chao, W. Peisong, M. Lingzheng (2020) Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm. Energy Conversion and Management, 205:112474–500. DOI: 10.1016/j.enconman.2020.112474

Zerhouni. J. F. Z, M. Telidjane (2015) Branchement direct d’une pile à combustible à membrane échangeuse de protons à une charge et modelisation, ” Rev. Roum. Sci. Techn. – Électrotechn. et Énerg, 60 (4) :387–396.

Zidane. N, S. Lalouni Belaid, (2022) A new fuzzy logic solution for energy management of hybrid photovoltaic/battery/hydrogen system. Rev. Roum. Sci. Techn.–Électrotechn. et Énerg.67(1) : 21-26. https://journal.iem.pub.ro/rrst-ee/article/view/151

Zidane. N, S. Lalouni (2017), Optimal sizing of hybrid PV/FC/EZ/BAT system using LPSP concept, 5th International Conference on Electrical Engineering in Boumerdes, Algeria, ICEE’2017.