Using multilayered neural networks for determining global solar radiation upon tilted surface in Fianarantsoa Madagascar
Main Article Content
Abstract
The knowledge of the local solar radiation characteristics is indispensable in the survey of any system exploiting solar energy in any location. The author is particularly interested by the global solar radiance upon tilted surface per time unit to help operators using solar energy in their work. The target is, among others, helping solar drying operators that need while tuning drying system the knowledge of the global solar radiation that could be received on inclined solar captors in implantation site. The aim of this paper is to use neural network method to search for solar radiation upon a tilted surface. Multilayered neural networks (MNN) trained by gradient back-propagation are used to determine numeric values of monthly means and hourly variations of the global solar radiation upon a titled surface per time unit. The numerical calculations are made with the geographical and meteorological parameters (latitude, longitude and clearness index) of the location of Fianarantsoa, Madagascar.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.