Constant Property Newtonian Fluid Flow and Heat Transfer overCascaded Fins
Main Article Content
Abstract
Turbulent flow and heat transfer characteristics were studied and analyzed numerically for a constant property Newtonian fluid flowing through a two-dimensional horizontal rectangular cross section channel with staggered, transverse cascaded rectangular-triangular fins (CRTFs) and a constant temperature along both walls. The governing equations based on model used to describe the turbulence phenomenon, are solved by the finite volume method using the SIMPLEC-algorithm. Computations were carried out in the fully-developed regime for different Reynolds numbers, and geometric locations. In particular, velocity and temperature fields, skin friction coefficient, and local and average Nusselt numbers were obtained. This study can be a real application in the field of heat exchangers and air plane solar collectors.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.