Experimental and CFD investigation of cavitation phenomenon in the distributor of a Banki-Michell Turbine

Main Article Content

Jean Bosco Niyonzima
Patrick Hendrick

Abstract

Cavitation is a physical phenomenon that often occurs in hydraulic machines such as pumps, valves, and turbines. Although the Banki-Michell turbine has been used for a long time in small hydropower, no study related to this phenomenon of cavitation in the injector of this turbine has been done. In this study, we will present the results of a numerical study carried out in the nozzle of a Banki-Michell turbine. The numerical solution of the Navier Stokes cavitation equations of the Banki-Michell turbine injector was carried out considering a 2D geometry of the injector-rotor assembly. The simulation results showed that the cavitation phenomenon appears when the water flow area in the nozzle becomes less than 50%. Furthermore, the results also showed that the occurrence of this cavitation phenomenon in the injector is more likely at higher operating heads. The results of an experimental study of the geometry of the injector showed that the height of the water passage section varies linearly with the degree of opening of the stator valve.

Article Details

How to Cite
[1]
J. B. . Niyonzima and P. Hendrick, “Experimental and CFD investigation of cavitation phenomenon in the distributor of a Banki-Michell Turbine”, J. Ren. Energies, vol. 25, no. 2, pp. 211 -, Dec. 2022.
Section
Articles

References

K. Otsuka et al. "Characteristics and suppression of vibration in cross-flow turbine with a cavity." Journal of Physics: Conference Series. Vol. 2217. No. 1. IOP Publishing, 2022.

B. Chérière, “Création d’une gamme de turbines à flux traversant de turbines à flux traversant. La Houille Blanche, 1986, no 1-2, p. 55-62.

C. E. Brennen, “Invited Lecture An Introduction to Cavitation Fundamentals,” no. July, pp. 1–17, 2011.

A. Wexler, “Vapor pressure formulation for water in range 0 to 100 Degrees C. A revision,” no. 3, 1976.

E. Goncalves, “Modélisation et simulation de la cavitation,” 2016.

O. Louisnard, Cours de Mécanique des Fluides (Note du cours). Ecole des mines d’Albi, 2012.

K. L. Lawrence, Ansys 10.0 Workbench tutorial, Arlington: SDC Publications, 2006.

S. Colombo, “Abaque pour le calcul de la vitesse speécifique des turbines hydrauliques,” Houille Blanche, no. 4, pp. 99–100, 1935.

European Small Hydropower Association (ESHA), Petite Hydroelectricité. Guide technique pour la réalisation de projets. Bruxelles: Maison des énergies renouvelebles, 2005.

J.B. Niyonzima, “Lab performance testing of a small Banki-Michell hydraulic turbine for remote applications,” Journal of Renewable Energies, vol. 24, pp. 244–260, 2021.

H. Nouri and F. Ravelet, “Introduction à la simulation numérique des écoulements. Application au transfert thermique sur plaque plane avec,” 2012.

NUMECA International, “Flow Integrated Environment,” p. 317, 2005.

J. B. Niyonzima, “Etude du potentiel hydroélectrique de la province Kayanza (Burundi): Application de la turbine Banki-Michell dans l’électrification des zones rurales,” Thèse de doctorat, Université libre de Bruxelles, Ecole polytechnique de Bruxelles, p. 120, 2020.

A. Arter et U. Meier, Harnessing WP on SM scale volume 2_Hydraulics-Engineering-Manual.pdf. SKAT, Swiss Center for Appropriate technology, 1990.

A. Harvey et al., Micro-Hydro Design Manual. A guide to small-scale water power schemes, 1993.

J. B. Niyonzima and P. Hendrick, “Small Hydropower Development in Burundi,” in International Conference Sustainable Energy for Africa, 2017, pp. 179–204.