Integration of PV Distributed Generator in Electrical Distribution System with Electric Vehicles Charging Stations Considering Uncertainties using Chaotic SSA Algorithm
Main Article Content
Abstract
The penetration of renewable energy resource units in the Electrical Distribution System (EDS) has gradually increased. In addition to that, the interest in the electrification of the transport sector has brought about increasingly significant incentives for the integration of Electric Vehicles Charging Station (EVCS). In this regard, the planning of the installation of PV source-based Distributed Generation (DG) units in EDS considering EVCS should be carefully considered to avoid stressing the EDS. This paper applied various Chaotic Salp Swarm Algorithm (CSSA) based various chaotic maps methods with the multi-objective functions that are considered minimizing simultaneous the Active Power Loss (APL), the Annual Losses Cost (ALC), and the Total Voltage Deviation (TVV) in EDS. The proposed algorithms are tested on a standard IEEE 69-bus system that is used to demonstrate the feasibility of the CSSA algorithm in allocating the DG units by considering the uncertainty of the power delivered by the DG as well as the variation of load demand and EVCS in 24 hours. Furthermore, the overall EDS performances are also enhanced with simultaneous placement of both devices.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.